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Introduction

Motivation

Soit K un corps de nombres, G un groupe de permutations transitif sur n élé-
ments. On dé�nit FK,n(G) l'ensemble des classes d'isomorphisme d'extensions
L/K de degré n telles que la clôture galoisienne N de L/K ait groupe de Galois
isomorphe à G.

Cette thèse étudie la fonction de comptage

NK,n(G,X) = |{L ∈ FK,n(G),Nd(L/K) ≤ X}|,

qui énumère les éléments de FK,n(G), ordonnés par discriminant relatif. On va
adopter deux points de vue di�érents, et, en quelque sorte, complémentaires.

Asymptotique

D'un côté, on a le point de vue asymptotique, quand X tend vers l'in�ni. Celui-
ci est un thème classique, qui remonte à Gauss [35], qui compta les classes de
formes quadratiques binaires avec discriminant borné. Un certain nombre de
conjectures importantes ont été formulées récemment à propos de ce sujet, par
Malle [43], Bhargava ([3, �6.2]) et Ellenberg et Venkatesh [30]. La conjecture de
Malle est sans doute la plus célèbre. Elle a�rme que

NK,n(G,X) ∼ c(G,K)Xa(G)(logX)b(G,K)−1,

avec des constantes explicites, a dépendant seulement de G et b et c dépendant
de G et de K.

Cette conjecture a été prouvée pour les groupes abéliens [42, 55], et pour la
plupart des extensions de degré ≤ 5, au moins sur Q. Un certain nombre de
résultats fondamentaux a été obtenu, en particulier, par Cohn [21], Davenport-
Heilbronn [26], Datskovsky-Wright [27], Cohen-Diaz y Diaz-Olivier [17, 18, 19],
et Bhargava [5, 6, 7]. Pour un survol historique sur les développements de ce
sujet jusqu'à 2005, on invite le lecteur à faire référence à [16] et [3].

En 2005, Klüners [40] donna un contre-exemple à la conjecture de Malle,
qui se basait sur la présence de certaines racines de l'unité dans des extensions
intermediaires. Türkelli [52] a proposé une modi�cation à la conjecture de Malle,
qui évite ce type de contre-exemples.

Algorithmique

Notre deuxième point de vue dans le comptage d'extensions de corps de nombres
est algorithmique. Dans ce cadre, on peut placer le travail de Belabas [1, 2]
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ainsi que beaucoup d'autres (pour un survol, voir [44]). Dans cette perspective
particulière, la théorie de la réduction et la géometrie des nombres, ainsi que
les bijections explicites motivées par la classi�cation des espaces préhomogènes,
deviennent les acteurs principaux. Si les derniers sont des objets plutôt récents,
la théorie de la réduction a une histoire assez longue, qui remonte au moins au
travail de Gauss sur les formes quadratiques binaires et ternaires. Après lui,
Bianchi [10], Julia [39] et d'autres, ont generalisé cette théorie à d'autres corps
de nombres, en particulier ceux quadratiques imaginaires. Tout le 19ème siècle
a été fasciné par la théorie des invariants, un chapitre conclu par la preuve
de Hilbert que l'algèbre des invariants est de type �ni [37]. Après cela, la
théorie des invariants a été rendue de plus en plus abstraite, en utilisant les
répresentations de groupes et la théorie des invariants géometriques de Mumford
[46]. Mais la théorie des invariants classique trouva des nouvelles applications,
et devint à nouveau très actuelle dans les travaux plus récents de Elstrodt,
Grunewald et Mennicke [31, 32, 33] (dans leur travail sur l'espace hyperbolique
3-dimensionnel), Cremona et Stoll [23, 25] (qui étaient motivés par l'étude des
courbes elliptiques et hyperelliptiques) et en�n dans le travail de Bhargava [5,
6, 7, 8, 9], qui généralise la loi de composition de Gauss et trouve des bijections
très intéressantes, pour paramétriser les corps de nombres de degré ≤ 5 et des
parties de leur groupe de classes.

Structure de la thèse

Cette thèse s'intéresse aux deux manières de compter les corps de nombres
décrites ci-dessus.

Le premier chapitre est un travail joint avec Henri Cohen; on prouve une nou-
velle formule asymptotique pour les extensions quadratiques avec une résolvante
quadratique �xée (Theorem 1.6.2), en ra�nant la Conjecture de Malle.

Le second chapitre décrit un nouveau algorithme, pour énumerer toutes les
extensions cubiques d'un corps de nombres quadratique imaginaire de nombre
de classes 1, avec discriminant relatif borné, en temps presque-linéaire.

L'appendix A esquisse la preuve de l'extension de la théorie de Davenport-
Heilbronn, dûe à Taniguchi.

L'appendix B décrit l'algorithme classique pour énumerer les extensions cu-
biques d'un corps de nombres donné, en utilisant la théorie des corps de classes
de rayon.

L'appendix C étudie les erreurs d'arrondis dans les calculs en précision �ot-
tante dans notre algorithme principal.

L'appendix D donne des polynômes explicites dont on a besoin pour véri�er
rigoureusement les conditions de bords dans notre théorie de la réduction pour
formes cubiques binaires sur des corps quadratiques imaginaires.

On va maintenant présenter en détail nos résultats principaux.

Comptage d'extensions cubiques avec résolvante quadra-
tique �xée

Soit k un corps de nombres �xé. On considère une extension cubique K/k et
on appelle N la clôture Galoisienne de K/k. Quand K/k n'est pas cyclique on
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a Gal(N/k) ' S3, et le corps de nombres N contient une unique sous-extension
quadratique K2/k.

N

2||
||

||
||

C3K

3 K2

2
||

||
||

||

k

Quand K/k est cyclique on a N = K et Gal(N/k) ' C3. Ce cas a déjà été
traité dans [18], mais on l'inclut ici pour des raisons d'exhaustivité, en posant
K2 = k; par abus de langage on appelle toujours K2 une extension quadratique
de k, même si [K2 : k] = 1.

On �xe l'extension quadratique K2/k, et on appelle F(K2) l'ensemble des
extensions cubiques K/k, modulo k-isomorphisme, telles que la sous-extension
quadratique de la clôture Galoisienne de K/k soit isomorphe à K2.

On dé�nit

N(K2/k,X) = |{K ∈ F(K2), Nk/Q(d(K/k)) ≤ X}| .

où d(K/k) est le discriminant relatif de K/k et Nk/Q dénote la norme absolue.
On invite le lecteur à remarquer que

Nk,3(S3, X) =
∑

K2/k,K2 6=k

N(K2/k,X), et Nk,3(C3, X) = N(k/k,X),

donc on est en train d'étudier un ra�nement de la conjecture de Malle. Notre
théorème principal (Theorem 1.6.2) donne une formule asymptotique pour
N(K2/k,X); on l'énonce ici seulement dans le cas k = Q. Dans ce simple cas,
on utilise la notation N(K2, X) à la place de N(K2/Q, X).

Théorème. Comme ci-dessus, soit K2 = Q(
√
D) une extension de Q avec

[K2 : Q] ≤ 2, on dénote par K ′2 = Q(
√
−3D) le corps miroir de K2, et l'on pose

g(K ′2) = 3 si K ′2 = Q(
√
−3), et g(K ′2) = 1 sinon. Alors:

(1) (Corps cubiques purs.) On a

N(Q(
√
−3), X) = C(Q(

√
−3))Y (log(Y ) +D(Q(

√
−3))− 1) +O(Y 2/3+ε),

pour tout ε > 0, où Y =
√
X/d(K2/k)

C(Q(
√
−3)) =

7
30

∏
p

(
1− 3

p2
+

2
p3

)
D(Q(

√
−3)) = 2γ − 16

35
log(3) + 6

∑
p

log(p)
p2 + p− 2

,

et γ est la constante d'Euler.
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(2) (Cas général.) Pour D 6= −3, on note aK′2(p) le nombre d'idéaux premiers
de degré 1 (non rami�és) au dessus de p dans K ′2. Alors

N(Q(
√
D), X) = C(Q(

√
D))Y +O(Y 2/3+ε) ,

où Y =
√
X/d(K2/k)

C(Q(
√
D)) = g(K ′2)

c3(K ′2)
33+r2(K′2)

∏
p 6=3

(
1 +

aK′2(p)
p

)(
1− 1

p

)
,

et

c3(K ′2) =


11 si 3ZK′2 = p2

1 ,

15 si 3ZK′2 = p1 ,

21 si 3ZK′2 = p1p2 .

On souligne le fait que la formule dans (2) a été donnée à cause de son élégance,
mais elle ne doit pas être utilisée pour les calculs pratiques des constantes; pour
cela se référer au Corollaire 1.8.6 ci-dessous.

Un algorithme pour énumerer les extensions cubiques

Le second chapitre concerne le point de vue algorithmique. L'idée est de généraliser
l'algorithme de Belabas énumérant les extensions cubiques de Q, à d'autres
corps de nombres. L'outil principal qui nous permet cette généralisation est le
théorème de Taniguchi [50], qui étend les bijections de Davenport-Heilbronn.

Le théorème de Taniguchi énumère les O-algèbres cubiques au dessus d'un
anneau de Dedekind arbitraire O, mais l'appliquer concrètement pour obtenir
un algorithme m'a obligée à faire un certain nombre de restrictions.

En ce moment, l'algorithme presenté ici marche seulement sur les corps
de nombres quadratiques imaginaires avec nombre de classes 1, c'est à dire
Q(
√
−D), avec D ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}.
Une généralisation à d'autres corps de nombres quadratiques imaginaires

est sans doute possible, mais nécessite un travail additionel sur les actions de
certains groupes de matrices sur l'espace hyperbolique 3-dimensionnel, donc
on le laissera comme un problème ouvert. Pour les corps de nombres avec un
nombre in�ni d'unités, le problème semble même plus di�cile.

Le résultat principal de ce chapitre est le suivant.

Théorème. Soit K un corps de nombres quadratique imaginaire avec nombre de
classes 1. Il existe un algorithme qui énumère toutes les extensions de K jusqu'à
une borne X sur la norme du discriminant relatif. Cet algorithme marche en
temps Oε(X1+ε), pour tout ε > 0.

Notre algorithme utilise la théorie de la réduction des formes hermitiennes bi-
naires sur l'anneau des entiers OK deK. Comme le nombre de corps de nombres
calculés est �K X, notre algorithme est essentiellement linéaire dans la taille
de la sortie.

Il est intéressant de comparer cet algorithme avec le classique, qui utilise
la théorie des corps de classes de rayon. Ce dernier marche sur un corps de
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base quelconque K; une borne pour le discriminant relatif d'une extension cu-
bique L/K donne une borne pour le discriminant du sous-corps quadratique
K2/K de sa clôture galoisienne L2/K, mais aussi une borne sur le conducteur
de l'extension cyclique cubique L2/K2. L'algorithme parcourt tous les corps
possibles K2, et les conducteurs f ⊂ OK2 et étudie les sous-groupes d'indice 3
dans les corps de classes de rayon Clf(K2).

On a étudié et implementé cet algorithme classique, qui requiert en partic-
ulier le calcul du corps de classes de rayon de tous les corps K2; sans supposer
GRH, cela requiert un temps (discK2)1/2 pour chaque corps, ce qui est de
l'ordre de X1/2; et il y a, malheuresement, �K X de tels corps K2, ce qui
donne un algorithme de complexité Ω(X3/2). On souligne le fait que notre al-
gorithme est presque-linéaire inconditionellement : pour un corps de nombres
quadratique imaginaire K de nombre de classes 1 donné, on énumère les équa-
tions qui dé�nissent toutes les extensions cubiques de K de discriminant borné
sans avoir besoin de calculer des invariants arithmétiques pour d'autres corps
de nombres que K.
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Introduction

Motivation

Let K be a number �eld, G a transitive permutation group on n letters. We
de�ne FK,n(G) as the set of isomorphism classes of extensions L/K of degree n
such that the Galois closure N of L/K has Galois group isomorphic to G.

This thesis studies the counting function

NK,n(G,X) = |{L ∈ FK,n(G),Nd(L/K) ≤ X}|,

enumerating the elements of FK,n(G), ordered by relative discriminant. We will
use two di�erent, and somehow complementary, points of view.

Asymptotics

On one side, we have the asymptotic point of view, as X tends to in�nity.This is
quite a classical theme dating back to Gauss [35], who counted classes of binary
quadratic forms of bounded discriminant. A number of important conjectures
have been formulated recently on this subject, by Malle [43], Bhargava (see [3,
�6.2]) and Ellenberg and Venkatesh [30]. Malle's conjecture is perhaps the most
famous. It says that

NK,n(G,X) ∼ c(G,K)Xa(G)(logX)b(G,K)−1,

with explicit constants, a depending only on G and b and c depending on G and
K.

This conjecture have been proved for abelian groups [42, 55], and for most ex-
tensions of degree ≤ 5, at least over Q. A number of landmark results have been
obtained in particular by Cohn [21], Davenport-Heilbronn [26], Datskovsky-
Wright [27], Cohen-Diaz y Diaz-Olivier [17, 18, 19], and Bhargava [5, 6, 7]. For
an historical survey on this topic developments until 2005, see [16] and [3].

In 2005, J. Klüners [40] gave a counterexample to Malle's conjecture, relying
on the presence of appropriate roots of unity in intermediate extensions. Türkelli
[52] proposed a modi�cation to Malle's conjecture which avoids this kind of
counterexamples.

Algorithmics

Our second point of view in counting number �eld extensions is algorithmic. In
this area we can place the work by Belabas [1, 2] and many others (for a sur-
vey, see [44]). In this particular perspective, reduction theory and geometry of
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numbers, as well as explicit bijections motivated by the classi�cation of preho-
mogeneous vector spaces, become the main actors. If the latter ones are rather
recent objects, reduction theory has a quite long story, dating back at least to
Gauss's work on binary and ternary quadratic forms. After him, Bianchi [10],
Julia [39] and others generalized this theory to other number �elds, in particular
imaginary quadratic ones. The whole 19th century was fascinated by the theory
of invariants, a chapter closed by Hilbert's proof of the �nite generation of the
algebra of invariants [37]. After that, invariant theory was more and more ab-
stracted, using group representations and Mumford's geometric invariant theory
[46]. But classical invariant theory found new applications, and it got again very
actual in more recent works by Elstrodt, Grunewald and Mennicke [31, 32, 33]
(on their work about the hyperbolic 3-space), Cremona and Stoll [23, 25] (who
were motivated by the study of elliptic and hyperelliptic curves) and �nally in
the work of Bhargava [5, 6, 7, 8, 9], which generalizes Gauss's composition law
and �nds amazing bijections parametrizing number �elds of degree ≤ 5, and
parts of their ideal class groups.

Thesis' Structure

This thesis is about both �ways� of counting number �elds.

The �rst chapter is joint work with Henri Cohen; it proves a new asymptotic
formula for cubic extensions with given quadratic resolvent (Theorem 1.6.2),
re�ning Malle's conjecture.

The second chapter describes a new (essentially) linear-time algorithm to
list all the cubic extensions of an imaginary quadratic number �elds of class
number 1, given a bound on the relative discriminant.

Appendix A sketches the proof of Taniguchi's extension of the Davenport-
Heilbronn theory.

Appendix B describes the classical class �eld theory algorithm to enumerate
cubic extensions of a given number �eld.

Appendix C studies the round-o� errors in the �oating point computations
in our main algorithm.

Appendix D gives explicit polynomials needed to check rigorously the bound-
ary conditions in our reduction theory for binary cubic forms over imaginary
quadratic �elds.

We now present in more detail our main results.

Counting cubic extensions with given quadratic resolvent

Let us �x a number �eld k. We consider a cubic extension K/k and we call N
the Galois closure of K/k. When K/k is not cyclic we have Gal(N/k) ' S3,
and the �eld N contains a unique quadratic subextension K2/k.
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When K/k is cyclic we have N = K and Gal(N/k) ' C3. This case has already
been treated in [18], but we include it for the sake of completeness by setting
K2 = k; by abuse of language we still call K2 a quadratic extension of k, even
though [K2 : k] = 1.

We �x the quadratic extension K2/k, and we call F(K2) the set of cubic
extensions K/k, up to k-isomorphism, such that the quadratic subextension of
the Galois closure of K/k is isomorphic to K2.

We de�ne

N(K2/k,X) = |{K ∈ F(K2), Nk/Q(d(K/k)) ≤ X}| .

where d(K/k) is the relative discriminant ideal of K/k and Nk/Q denotes the
absolute norm. Note that

Nk,3(S3, X) =
∑

K2/k,K2 6=k

N(K2/k,X), and Nk,3(C3, X) = N(k/k,X),

so we are studying a re�nement of Malle's conjecture. Our main theorem (The-
orem 1.6.2) gives an asymptotic formula for N(K2/k,X); we state it here only
for k = Q. In this simple case, we will use the notation N(K2, X) instead of
N(K2/Q, X).

Theorem. As above, let K2 = Q(
√
D) be an extension of Q with [K2 : Q] ≤ 2,

denote by K ′2 = Q(
√
−3D) the mirror �eld of K2, and set g(K ′2) = 3 if K ′2 =

Q(
√
−3), and g(K ′2) = 1 otherwise. Then:

(1) (Pure cubic �elds.) We have

N(Q(
√
−3), X) = C(Q(

√
−3))Y (log(Y ) +D(Q(

√
−3))− 1) +O(Y 2/3+ε),

for every ε > 0, where Y =
√
X/d(K2/k)

C(Q(
√
−3)) =

7
30

∏
p

(
1− 3

p2
+

2
p3

)
D(Q(

√
−3)) = 2γ − 16

35
log(3) + 6

∑
p

log(p)
p2 + p− 2

,

and γ is Euler's constant.
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(2) (General case.) For D 6= −3, denote by aK′2(p) the number of (unrami�ed)
degree 1 primes above p in K ′2. Then

N(Q(
√
D), X) = C(Q(

√
D))Y +O(Y 2/3+ε) ,

where Y =
√
X/d(K2/k)

C(Q(
√
D)) = g(K ′2)

c3(K ′2)
33+r2(K′2)

∏
p 6=3

(
1 +

aK′2(p)
p

)(
1− 1

p

)
,

and

c3(K ′2) =


11 if 3ZK′2 = p2

1 ,

15 if 3ZK′2 = p1 ,

21 if 3ZK′2 = p1p2 .

Note that the formula in (2) is given because of its elegance, but it should not
be used for practical computation of the constants; see Corollary 1.8.6 below.

An algorithm for computing cubic extensions

The second chapter deals with the algorithmic point of view. The idea is to
generalize Belabas's algorithm for listing cubic extensions of Q to other number
�elds. The main tool allowing us this generalization is Taniguchi's theorem [50],
which generalizes Davenport-Heilbronn bijections.

Taniguchi's theorem enumerates cubicO-algebras over an arbitrary Dedekind
domain O, but applying it concretely to obtain an algorithm obliged me to make
a number of restrictions.

At this moment, the algorithm presented here works only over imaginary
quadratic �elds with class number 1, that is Q(

√
−D), withD ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}.

A generalization to other imaginary quadratic �elds should be possible, but
this needs some additional work on the actions of some groups of matrices on
the hyperbolic 3-space, so we shall leave it as an open question. For number
�elds, with in�nitely many units, the problem seems even more di�cult.

Our main result in this chapter is the following.

Theorem. Let K be an imaginary quadratic number �eld with class number 1.
There exists an algorithm which lists all cubic extensions of K up to a bound
X on the norm of the relative discriminant ideal. This algorithm runs in time
Oε(X1+ε), for all ε > 0.

Our algorithm uses the reduction theory of binary Hermitian forms over the
ring of integers OK of K. Since the number of computed �elds is �K X, our
algorithm is essentially linear in the output size.

It is interesting to compare this algorithm with the classical one, using class
�eld theory. The latter works over an arbitrary base number �eld K; a bound
for the relative discriminant of a cubic extension L/K yields both a bound for
the discriminant of the quadratic sub�eld K2/K of its Galois closure L2/K, as
well as on the conductor of the cyclic cubic extension L2/K2. The algorithm
loops over all possible K2, and conductors f ⊂ OK2 and studies the index-3
subgroups in the ray class groups Clf(K2).
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We studied and implemented this classical algorithm, which requires in partic-
ular the computation of the class groups of all the �elds K2; without assuming
the GRH, this already requires time (discK2)1/2 for a single �eld, which is of
the order of X1/2; and there are unfortunately �K X such �elds K2, yielding
an Ω(X3/2) algorithm. We stress the fact that our algorithm is almost linear
unconditionally : for a given imaginary quadratic number �eld K of class num-
ber 1, we list de�ning equations for all cubic extensions of bounded discriminant
of K without needing to compute arithmetic invariants for number �elds other
than K.
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Chapter 1

Counting Cubic Extensions

with given Quadratic

Resolvent

This chapter is joint work with Henri Cohen [20].

1.1 Introduction

Let k be a number �eld, �xed once and for all as our base �eld, let K/k be a
cubic extension of k, and let N be a Galois closure of K/k. When K/k is not
cyclic we have Gal(N/k) ' S3 ' D3, the dihedral group with 6 elements, and
the �eld N contains a unique quadratic subextension K2/k, so the very simple
�eld diagram is the following, denoting by τ2 the generator of Gal(K2/k) and
by σ a generator of Gal(N/K2):

N

2

〈τ2〉

||
||

||
||

C3〈σ〉K

3 K2

2

〈τ2〉

||
||

||
||

k

The group relations are τ2
2 = σ3 = 1 and τ2στ

−1
2 = σ−1.

When K/k is cyclic we have N = K and Gal(N/k) ' C3. Although this
case has already been treated in [18], since the methods are almost identical we
include it in the present chapter by setting K2 = k, which by abuse of language
we will still call a quadratic extension of k, even though [K2 : k] = 1.

We �x the quadratic extension K2/k, and we call F(K2) the set of cu-
bic extensions K/k (considered up to k-isomorphism) such that the quadratic
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subextension of the Galois closure of K/k is isomorphic to K2. Our goal is to
compute an asymptotic formula for

N(K2/k,X) = |{K ∈ F(K2), Nk/Q(d(K/k)) ≤ X}| ,

where d(K/k) is the relative ideal discriminant of K/k and N denotes the ab-
solute norm.

By a well-known theorem (see for example Theorem 9.2.6 of [12]), the con-
ductor of the cyclic extension N/K2 is of the form f(N/K2) = f(K/k)ZK2 , where
f(K/k) is an ideal of the base �eld k (when K/k is noncyclic this is of course
not a conductor in the usual sense). When k = Q we will write f(K/Q) for the
positive integer generating the ideal f(K/Q) of Z.

Since d(K/k) = d(K2/k)f(K/k)2, it is clear that

N(K2/k,X) = M(K2/k, (X/Nk/Q(d(K2/k)))1/2) ,

where

M(K2/k,X) = |{K ∈ F(K2), Nk/Q(f(K/k)) ≤ X}|
= |{K ∈ F(K2), NK2/Q(f(N/K2)) ≤ X2}| ,

so it is this quantity that we want to compute.

1.2 Galois Theory

De�nition 1.2.1. We denote by ρ = ζ3 a primitive cube root of unity and we
set L = K2(ρ) and kz = k(ρ). We let τ be a generator of Gal(L/K2) (so that
τ = 1 if ρ ∈ K2), and we let τ2 be a generator of Gal(K2/k) (so that τ2 = 1 if
K2 = k). We denote by G = Gal(L/k). Finally, as above we let σ be one of the
two generators of the cyclic group of order 3 Gal(N/K2) ' Gal(Nz/L), where
Nz = N(ρ).

Remarks.

(1) By de�nition K2 is the �xed �eld of L by τ , so that τ = 1 if and only if
τ(ρ) = ρ. This is of course not true for τ2.

(2) We have the following relations:

τ2 = τ2
2 = 1 , ττ2 = τ2τ , τσ = στ .

It follows that when τ and τ2 are nontrivial we have G ' V4, the Klein
4-group, and otherwise G is either trivial or isomorphic to C2.

We will need to distinguish �ve cases, according to the triviality or not of τ or
τ2, and to their action on ρ. We will order them as follows, and this numbering
will be kept throughout this chapter, so should be referred to.

(1) τ = τ2 = 1: here K/k is a cyclic cubic extension, in other words K2 = k,
Gal(Nz/k) ' C3, and ρ ∈ k.

(2) τ2 = 1 and τ(ρ) = ρ−1: here K/k is a cyclic cubic extension, so that
K2 = k, Gal(Nz/k) ' C6, in other words τσ = στ , and ρ /∈ k so L = k(ρ).

2



(3) τ = 1 and τ2(ρ) = ρ but τ2 6= 1: here K/k is noncyclic, ρ ∈ k, and in
particular L = K2, and Gal(Nz/k) ' D3, in other words τ2σ = σ−1τ2.

(4) τ = 1 and τ2(ρ) = ρ−1: here L = K2, so that ρ ∈ K2, but ρ /∈ k, so
K2 = k(ρ), and again Gal(Nz/k) ' D3, in other words τ2σ = σ−1τ2.

(5) τ 6= 1 and τ2 6= 1: here ρ /∈ K2, so τ(ρ) = ρ−1 but τ2(ρ) = ρ, so that the
�xed �eld of L under τ2 is equal to kz = k(ρ), and Gal(Nz/k) ' D3×C2,
in other words τσ = στ and τ2σ = σ−1τ2.

De�nition 1.2.2. (1) In cases (1) to (5) above, we set T = ∅, {τ + 1},
{τ2 + 1}, {τ2 − 1}, {τ + 1, τ2 + 1}, respectively, where T is considered as
a subset of the group ring Z[Gal(L/k)] or of F3[Gal(L/k)].

(2) We de�ne ι(τ ± 1) = τ ∓ 1 and ι(τ2 ± 1) = τ2 ∓ 1.

(3) For any group M on which T acts, we denote by M [T ] the subgroup of
elements of M annihilated by all the elements of T .

We will need the following trivial lemma.

Lemma 1.2.3. Let M be an F3[G]-module. For any t ∈ T we have M [t] =
ι(t)(M), and conversely M [ι(t)] = t(M).

Proof. It is clear that tι(t) = ι(t)t = 0. Conversely, assume for instance that
x ∈ M [t], in other words that t(x) = 1. If t = τ + ε with ε = ±1 we thus have
τ(x) = x−ε. But then since ι(t) = τ − ε, we have

ι(t)(xε) = τ(xε)x−ε
2

= x−2ε2 = x−2 = x ,

since ε = ±1 and since x3 = 1, M being an F3-vector space. Same for τ2.

Proposition 1.2.4. (1) There exists a bijection between on the one hand iso-
morphism classes of extensions K/k having quadratic resolvent �eld iso-
morphic to K2, and on the other hand classes of elements α ∈ (L∗/L∗3)[T ]
such that α 6= 1 modulo the equivalence relation identifying α with its in-
verse.

(2) If α ∈ L∗ is some representative of α, the extension K/k corresponding to
α is the �xed �eld under Gal(L/k) of the �eld Nz = L( 3

√
α).

Proof. Since ρ ∈ L, by Kummer theory, cyclic cubic extensions Nz of L
are of the form Nz = L( 3

√
α), where α 6= 1 is unique in (L∗/L∗3) modulo the

equivalence relation identifying α with its inverse. If θ3 = α, then if necessary
changing σ into σ−1 we may assume that σ(θ) = ρθ. Consider �rst the relations
involving τ . Note that in all cases τ commutes with σ, and that it is nontrivial
if and only if τ(ρ) = ρ−1 (cases (2) and (5)). Thus,

σ(θτ(θ)) = ρθτ(σ(θ)) = ρθτ(ρθ) = θτ(θ) ,

so by Galois theory θτ(θ) ∈ L (since it is trivially stable by τ it is in fact in K2,
but we do not need this), so ατ(α) is a cube, in other words α ∈ (L∗/L∗3)[τ+1].

3



Consider now the relations involving τ2. When it is nontrivial we have
τ2σ = σ−1τ2. Thus, if in addition τ2(ρ) = ρ (cases (3) and (5)), a similar
computation gives

σ(θτ2(θ)) = ρθτ2(σ−1(θ)) = ρθτ2(ρ−1θ) = θτ2(θ) ,

so α ∈ (L∗/L∗3)[τ2 + 1]. On the other hand, if τ2(ρ) = ρ−1 (case (4)), we check
in the same way that τ2(θ)/θ is stable by σ so here α ∈ (L∗/L∗3)[τ2 − 1].

Conversely, assume that these conditions are satis�ed. The group conditions
on τ and τ2 are automatically satis�ed, since they are so at the level of G =
Gal(L/k) which is a trivial, C2 or V4 extension, and the group conditions on σ
are exactly those corresponding to the set T . It follows that Nz/k is Galois with
suitable Galois group. The uniqueness statement comes from the corresponding
statement of Kummer theory, since α and α−1 give the same extension.

Recall from [12] the following de�nition.

De�nition 1.2.5. We denote by V3(L) the group of 3-virtual units of L, in
other words the group of u ∈ L∗ such that uZL = q3 for some ideal q of L,
or equivalently such that 3 | vp(u) for any prime ideal p of L. We de�ne the
3-Selmer group S3(L) of L by S3(L) = V3(L)/L∗3.

Since we will only consider 3-virtual units and the 3-Selmer group, we will
simply speak of virtual units and Selmer group. It is immediate that the Selmer
group is �nite: more precisely we have the following lemma.

Lemma 1.2.6. We have a split exact sequence of F3[G]-modules

1 −→ U(L)
U3(L)

−→ S3(L) −→ Cl(L)[3] −→ 1 ,

where the last nontrivial map sends u to the ideal class of q such that uZL = q3.

Proof. The exactness is immediate and left to the reader. Since it is also an
exact sequence of F3-vector spaces and since |G| divides 4 and is hence coprime
to 3, it follows from a general theorem of commutative algebra that it is an
exact sequence of F3[G]-modules.

Proposition 1.2.7. (1) There exists a bijection between isomorphism classes
of cubic extensions K/k with given quadratic resolvent �eld K2 and equiva-
lence classes of triples (a0, a1, u) modulo the equivalence relation (a0, a1, u) ∼
(a1, a0, 1/u), where a0, a1, and u are as follows:

(a) The ai are coprime integral squarefree ideals of L such that a0a
2
1 ∈

Cl(L)3 and a0a
2
1 ∈ (I/I3)[T ], where I is the group of fractionals

ideals of L.

(b) u ∈ S3(L)[T ], and u 6= 1 when a0 = a1 = ZL.

(2) If (a0, a1) is a pair of ideals satisfying (a) there exist an ideal q0 and an
element α0 of L such that a0a

2
1q

3
0 = α0ZL with α0 ∈ (L∗/L∗3)[T ]. The

cubic extensions K/k corresponding to such a pair (a0, a1) are given as
follows: for any u ∈ S3(L)[T ] the extension is the cubic subextension of
Nz = L( 3

√
α0u) (for any lift u of u).
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Proof. Let Nz = L( 3
√
α) as above. We can write uniquely αZL = a0a

2
1q

3

where the ai are coprime squarefree ideals of L. Since α ∈ (L∗/L∗3)[T ], we
clearly have a0a

2
1 ∈ (I/I3)[T ]. On the other hand the class of a0a

2
1 is equal to

that of q−3 so a0a
2
1 ∈ Cl(L)3. Now let a0, a1 be given satisfying these properties.

There exists an ideal q (whose class is not necessary in the kernel of T ) and an
element α ∈ L such that (a0a

2
1)q3 = αZL. Applying any t ∈ T , we deduce from

the assumption on a0a
2
1 that q3

1 = t(α)ZL for some ideal q1, so that t(α) is a
virtual unit, in other words that the class of t(α) is in S3(L). Since t ◦ ι(t) = 0,
we have t(α) ∈ S3(L)[ι(t)], so by Lemma 1.2.3 we deduce that t(α) ∈ t(S3(L)),
in other words that t(α) = γ3t(u), or equivalently t(α/u) = γ3, for some virtual
unit u and some element γ. Thus, if we set α0 = α/u, we have α0 ∈ (L∗/L∗3)[t],
and if uZL = q3

2 we have a0a
2
1(q/q2)3 = α0ZL. We have thus shown that, given

a0a
2
1 ∈ (I/I3)[T ], the condition that a0a

2
1 ∈ Cl(L)3 is necessary and su�cient

for the existence of q0 and α0 such that a0a
2
1q

3
0 = α0ZL with α0 ∈ (L∗/L∗3)[T ].

The rest of the proof is immediate: if a0a
2
1q

3
0 = α0ZL with α0 ∈ (L∗/L∗3)[T ],

then a0a
2
1q

3 = αZL with the same property for α if and only if α/α0 = (q/q0)3 ∈
V3(L)[T ], so α = α0u for some lift u of u ∈ S3(L)[T ]. Finally α and β give
equivalent extensions if and only if either β = αγ3, which does not change the
ai and changes u into uγ3 so does not change u, or if β = α−1γ3. In this case

βZL = a−1
0 a−2

1 q−3γ3 = a1a
2
0(γa−1

0 a−1
1 q−1)3 ,

which interchanges a0 and a1, and since α is replaced by α−1, it changes u into
1/u, �nishing the proof. Note that the only �xed point of this involution on
triples is obtained for a0 = a1 and u2 = 1, but since a0 and a1 are coprime this
means that a0 = a1 = ZL, and u = u3/u2 = 1.

Lemma 1.2.8. (1) The condition a0a
2
1 ∈ (I/I3)[T ] is equivalent to a1 =

τ(a0), a1 = τ2(a0), a0 = τ2(a0) and a1 = τ2(a1), and a1 = τ(a0) = τ2(a0)
in cases (2), (3), (4), and (5), respectively.

(2) The ideal a0a1 of L comes from an ideal aα of K2 (in other words a0a1 =
aαZL), and in cases (1), (2), and (3) it comes from an ideal of k, while
in cases (4) and (5), aα is an ideal of K2 invariant by τ2.

Proof. In case (4), we have τ2(a0)τ2(a1)2 = a0a
2
1q

3 for some ideal q. By
uniqueness of the decomposition, it follows that a0 and a1 are stable by τ2 (and
q = ZL), as claimed. In particular a0a1 is also stable by τ2, and by τ = 1. In
case (3), we have

τ2(a0)τ2(a1)2 = a−1
0 a−2

1 q3 = a1a
2
0(q/a0a1)3 ,

and again by uniqueness of this decomposition we deduce that a0 and a1 are
exchanged by τ2, as claimed. In particular a0a1 (which is an ideal of L = K2)
is not only stable by τ2 but comes in fact from an ideal of k. The other cases
follow similarly.

Note that in case (4) where L = K2 = k(ρ), an ideal of k is invariant by τ2,
but conversely a0a1 is an ideal of L invariant by τ2 if and only if it is equal to a
product ar, where a comes from an ideal of k, and r is a product of distinct prime
ideals p of L coprime to a and above a rami�ed prime p in L/k (in particular
above 3).
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In case (5), which is the only case where G = Gal(L/k) ' V4, we de�ne K ′2 to
be the quadratic subextension of L/k di�erent from K2 and kz. For later use,
we are interested in describing the prime ideals p of k, pZK2 | aα. For this, we
set the following de�nition.

De�nition 1.2.9. We de�ne D (resp., D3) to be the set of all prime ideals p
in k with p - 3Zk (resp., with p | 3Zk), such that:

• no other conditions in cases (1) and (4);

• p is split in L/k in case (2) and (3);

• the ideals above p are split in L/K2 and L/kz in case (5).

Proposition 1.2.10. (1) Let p be a prime ideal of K2 dividing aα and let p
be the prime ideal of k below p. Then p ∈ D or p ∈ D3.

(2) In cases (2) and (3), set K ′2 = L. Then in cases (2), (3), and (5) we have
p ∈ D or p ∈ D3 if and only p is split in K ′2/k.

Proof. (1). Let us treat case (2). Let pz be an ideal of L above p. Thus pz
divides one of the ai, so τ(pz) divides τ(ai) = aj with j 6= i. Since the ai are
coprime, we conclude that τ(pz) is coprime to pz, so p is split. Cases (3) and
(5) are proved in the same way.

(2). Since cases (2) and (3) repeat the de�nition, assume we are in case
(5), let pz be an ideal of L above p, let p1, p2, and p3 be the ideals below pz
in kz, K2, and K ′2 respectively, and denote as usual by D() the decomposition
groups. Now pz/p2 is split if and only if D(pz/p2) = 1, and since D(pz/p2) =
D(pz/p) ∩ Gal(L/K2), this is if and only if τ /∈ D(pz/p). Similarly, pz/p1 is
split if and only if τ2 /∈ D(pz/p). Since Gal(L/k) = {1, τ, τ2, ττ2}, it follows
that the ideals above p are split in L/K2 and L/kz if and only if D(pz/p) ⊂
{1, ττ2}. On the other hand, p is split in K ′2/k if and only if D(p3/p) = 1, and
since D(p3/p) ' D(pz/p)/D(pz/p3), this is the case if and only if D(pz/p) =
D(pz/p3), and again since D(pz/p3) = D(pz/p) ∩ Gal(L/K ′2), if and only if
D(pz/p) ⊂ Gal(L/K ′2) = {1, ττ2}, proving the result.

1.3 Conductors

The discriminant (equivalently, the conductor) of a cyclic Kummer extension
is given by an important theorem of Hecke (see [12], Section 10.2.9). We will
mainly need it in the cubic case, but we also need it in the quadratic case, where
it takes an especially nice form:

Theorem 1.3.1. Let k be a number �eld, let K2 = k(
√
D) be a quadratic

extension with D ∈ k∗ \ k∗2, and write uniquely DZk = aq2, where a is an
integral squarefree ideal. Then

d(K2/k) = f(K2/k) = 4a/c2 ,

where c is the largest ideal (for divisibility) dividing 2Zk and coprime to a such
that the congruence x2/D ≡ 1 (mod ∗c2) has a solution.
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Corollary 1.3.2. Let K be a number �eld such that ρ /∈ k, where ρ = ζ3 is a
primitive cube root of unity, and set Kz = K(ρ). Then

d(Kz/K) =
∏

p|3ZK
e(p/3) odd

p .

In particular, the rami�ed primes in Kz/K are those above 3 such that e(p/3)
is odd.

Proof. We have Kz = K(
√
−3), so we use the theorem with D = −3. We

have DZK = 3ZK = aq2 with

a =
∏

p|3ZK
e(p/3) odd

p .

On the other hand a is coprime to 2 and the congruence x2 ≡ −3 (mod 4) has
the solution x = 1, so c = 2ZK and the corollary follows.

If p is a prime ideal of K2, we will denote by pz any prime ideal of L above p.
By the above corollary, we have e(pz/p) = 2 if and only if L 6= K2 and e(p/3)
is odd, otherwise e(pz/p) = 1.

In the case of cyclic cubic extensions, the result is more complicated, especially
when L 6= K2. We �rst need some de�nitions.

De�nition 1.3.3. Let p be a prime ideal of k, p a prime ideal of K2 above p,
pz a prime ideal of L above p. To simplify notation:

• We set p1/2 = p if p is rami�ed in K2/k (i.e., pZK2 = p2), and similarly
p1/2 = pz if p is rami�ed in L/K2 (i.e., pZL = p2

z).

• We set r = r(p/p) = 1/e(p/p)

• We say that p ⊂ k divides some ideal b of K2 (resp., of L) when (pZK2)r

(resp., (pZL)1/e(pz/p)) does.

Note that e(pz/p) ≤ 2 (indeed, if for instance e(p/p) = 2 then e(p/3) is even so
pz/p is unrami�ed by Corollary 1.3.2), so we will never need to de�ne �p1/4�.

De�nition 1.3.4. Let α ∈ (L∗/L∗3)[T ] as above, let p be an ideal of k above
3, let p be an ideal of K2 above p, let pz be an ideal of L above p, and denote by
Cn the congruence x3/α ≡ 1 (mod ∗pnz ) in L. If this congruence is soluble for
n = 3e(pz/3)/2 we set Aα(p) = 3e(pz/3)/2 + 1. Otherwise, if n < 3e(pz/3)/2
is the largest exponent for which it has a solution, we set Aα(p) = n. In both
cases we set

aα(p) =
Aα(p)− 1
e(pz/p)

.

It is clear that Aα(p) and aα(p) do not depend on the ideal pz above p, whence
the notation.

In addition, we have the following properties:
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Proposition 1.3.5. (1) We have 3 - Aα(p), and in addition when e(pz/p) =
2 and Aα(p) < 3e(pz/3)/2 + 1 we also have 2 - Aα(p).

(2) We have 0 ≤ aα(p) < 3e(p/3)/2 − 1/e(p/p) and aα(p)e(p/p) ∈ Z, or
aα(p) = 3e(p/3)/2, which happens if and only if Aα(p) = 3e(pz/3)/2 + 1,
in which case it is only a half integer when e(pz/p) = 2.

(3) We have aα(p) 6≡ −e(pz/p) (mod 3).

Theorem 1.3.6. Let N correspond to α as above, write uniquely αZL = a0a
2
1q

3

with a0 and a1 integral coprime squarefree ideals, and let aα be the ideal of K2

such that a0a1 = aαZL (see Lemma 1.2.8). Then

f(N/K2) =

3aα
∏
p|3Zk(pZK2)e(p/3)/2

∏
p|3Zk

e(p/3) odd

(pZK2)1/2∏
p|3Zk
p-aα

(pZK2)daα(p)e(p/p)e/e(p/p) .

All these results come from similar results in [18] where we have just replaced
aα(p) by aα(p) = aα(p)/e(p/p).

Note that dae(p/p)e/e(p/p) is equal to a when e(p/p) = 2 (recall that in
that case a can be a half integer) and equal to dae otherwise (in particular when
e(pz/p) = 2).

De�nition 1.3.7. Let p be an ideal of k, let p be an ideal of K2 above p, and let
pz be an ideal of L above p. Let a be such that 0 ≤ a < 3e(p/3)/2−1/e(p/p) and
ae(p/p) ∈ Z, or a = 3e(p/3)/2. For ε = 0 or 1 we de�ne h(ε, a, p) as follows:

(1) when a = 3e(p/3)/2 we set h(0, a, p) = 0;

(2) when a < 3e(p/3)/2 we set

h(0, a, p) =


1 if e(pz/p) = 1,
1/2 if e(p/p) = 2 (hence e(pz/p) = 1),
0 if e(pz/p) = 2 (hence e(p/p) = 1);

(3) we set h(1, a, p) = 2/e(pz/p).

Lemma 1.3.8. Let b = a+ h(ε, a, p).

(1) Assume that b ≤ 3e(p/3)/2. Then h(ε, b, p) = h(ε, a, p), so that a =
b− h(ε, b, p).

(2) We have b = 0 if and only if a = 0, ε = 0, and e(pz/p) = 2. In particular,
if e(pz/p) = 1 we have b > 0.

Proof. (1). If h(ε, a, p) = 0 we have b = a, and h(1, a, p) only depends on
the value of e(pz/p) (and the fact that a ≤ 3e(p/3)/2), so the result is trivial
in both cases. We may therefore assume that ε = 0 and that h(0, a, p) > 0,
so that a < 3e(p/3)/2 and e(pz/p) = 1 or e(p/p) = 2, hence by de�nition
h(0, a, p) = 1/e(p/p). Since by assumption a < 3e(p/3)/2 − 1/e(p/p) it follows
that b < 3e(p/3)/2, so h(ε, b, p) = h(ε, a, p) as claimed.

(2). Evidently b = 0 if and only if a = 0 and h(ε, a, p) = 0, hence h(ε, 0, p) =
0. Since 0 < 3e(p/3)/2, by de�nition this is the case if and only if ε = 0 and
e(pz/p) = 2.
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Lemma 1.3.9. Let p be a prime ideal of k and denote by Dk the congruence
x3/α ≡ 1 (mod ∗pk) in L. If a is as in the above de�nition, then aα(p) = a if and
only if Dk is soluble for k = a+ h(0, a, p) and not soluble for k = a+ h(1, a, p),
where this last condition is ignored if a+ h(1, a, p) > 3e(p/3)/2.

Proof. Since α ∈ (L∗/L∗3)[T ] it is clear that the solubility of the congruence
Ck for pkz is equivalent to that for τ(pz)k or τ2(pz)k in all cases. Thus the
solubility of Dk is equivalent to that of Ck when e(pz/p) = 1, and to that of
C2k when e(pz/p) = 2.

Assume �rst that a = aα(p) = 3e(p/3)/2. By de�nition, this is equivalent
to the solubility of the congruence Ck for k = 3e(pz/3)/2 = 3e(p/3)e(pz/p)/2,
hence to that of D3e(p/3)/2 = Da whether e(pz/p) = 1 or 2, proving the result
since h(0, a, p) = 0 in this case.

Assume now that a < 3e(p/3)/2 and that e(pz/p) = 1, so the solubility of
Dk is equivalent to that of Ck. In this case Aα(p) = aα(p) + 1, so aα(p) = a is
equivalent to the solubility of Da+1 and the nonsolubility of Da+2, proving the
result since h(0, a, p) = 1 and h(1, a, p) = 2.

Assume that a < 3e(p/3)/2 and that e(pz/p) = 2. The congruence Dk is
now the same as the congruence C2k. By Proposition 1.3.5 we have Aα(pz) =
2aα(p) + 1 < 3e(pz/3)/2, with aα(p) ∈ Z, which means that the maximal m for
which Cm is soluble is odd. Thus aα(p) = a means that C2a+1 is soluble and
C2a+2 is not, so equivalently that Da = C2a is soluble and Da+1 = C2a+2 is
not, so h(0, a, p) = 0 and h(1, a, p) = 1.

Finally assume that a < 3e(p/3)/2 and that e(p/p) = 2. The congruence Dk

is equivalent to the congruence C2k. Since aα(p) can be a half integer, the choice
h(0, a, p) = 1/2 and h(1, a, p) = 1 that we have made �nishes the proof.

Remark. We have used in an essential way the fact that Aα(p) is odd when
e(pz/p) = 2 and Aα(p) ≤ 3e(pz/3)/2. Note that this result is rather subtle, and
follows from the study of higher rami�cation groups. On the other hand, it is
not necessary to use the fact that 3 - Aα(p), contrary to what was done in [18].
The resulting formulas, which are of course equivalent, are simpler.

1.4 The Dirichlet Series

Recall that f(N/K2) = f(K/k)ZK2 for some ideal f(K/k) of k, and that this
result also comes from the computation of higher rami�cation groups. In par-
ticular, NK2/Q(f(N/K2)) = Nk/Q(f(K/k))[K2:k]. To avoid having both the norm
from K2/Q and from k/Q, and to emphasize the fact that we are mainly inter-
ested in the latter, we set explicitly the following de�nition:

De�nition 1.4.1. If a is an ideal of k, we set N(a) = Nk/Q(a), while if a is an
ideal of K2, we set

N(a) = NK2/Q(a)1/[K2:k] .

This practical abuse of notation cannot create any problems since if a is an ideal
of k we have N(a) = N(aZK2). For instance, since f(N/K2) = f(K/k)ZK2 , we
have N(f(K/k)) = N(f(N/K2)). We emphasize that unless explicitly written
otherwise, from now on we will only use the above notation.
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De�nition 1.4.2. The fundamental Dirichlet series is de�ned by

Φ(s) =
1
2

+
∑

K∈F(K2)

1
N(f(K/k))s

,

where N is as in the preceding de�nition.

By the fundamental bijection (Proposition 1.2.7), we have

Φ(s) =
1
2

∑
(a0,a1)∈J

∑
u∈S3(L)[T ]

1
N(f(N/K2))s

,

where J is the set of pairs (a0, a1) of coprime integral squarefree ideals of L such
that a0a

2
1 ∈ (I/I3)[T ] and a0a

2
1 ∈ Cl(L)3, and where f(N/K2) is the conductor

of the extension N/K2 corresponding to the triple (a0, a1, u).
Indeed, the addition of 1/2 in the de�nition of Φ corresponds to the excluded

triple (ZL,ZL, 1), and the factor 1/2 in the above formula corresponds to the
equivalence relation between triples.

Thus, replacing f(N/K2) by the formula given by Theorem 1.3.6 we obtain

Φ(s) =
1

2 · 3(3/2)[k:Q]s
∏

p|3Zk,
e(p/3) odd

N(p)s/2
∑

(a0,a1)∈J

Sα0(s)
N(aα)s

, where

Sα0(s) =
∑

u∈S3(L)[T ]

∏
p|3Zk
p-aα

N(p)daα0u(p)e(p/p)es/e(p/p) ,

and where α0 is any element of L such that there exists an ideal q0 such that
a0a

2
1q

3
0 = α0ZL and α0 ∈ (L∗/L∗3)[T ]. Note that it is possible to require this

additional property thanks to Proposition 1.2.7.

De�nition 1.4.3. For α0 ∈ L∗ and b an ideal of L we introduce the function

fα0(b) =
∣∣{u ∈ S3(L)[T ], x3/(α0u) ≡ 1 (mod ∗b) soluble in L}

∣∣ ,
with the convention that fα0(b) = 0 if b - 3

√
−3.

Let pi for 1 ≤ i ≤ g be the prime ideals of k above 3 and not dividing aα (in
the sense of De�nition 1.3.3), set ei = e(pi/3), and for each i let ai be such
that 0 ≤ ai < 3ei/2 − 1/e(pi/pi) with aie(pi/pi) ∈ Z (where as usual pi is an
ideal of K2 above pi), or ai = 3ei/2. Note that since pi is above 3 we have
ei = e(pi/3) ≥ 1.

Thanks to Lemma 1.3.9, an easy inclusion-exclusion argument shows that

∑
u∈S3(L)[T ]

∀i, aα0u(pi)=ai

1 =
∑

(ε1,...,εg)∈{0,1}g
(−1)

P
i εifα0

 ∏
1≤i≤g

(piZK2)bi

 ,

where bi = ai + h(εi, ai, pi), and since we have set fα0(b) = 0 when b -
3
√
−3ZL, we may assume that 0 ≤ bi ≤ 3ei/2. Note also that e(pi/pi)bi ∈

Z ∪ {3e(pi/3)/2}.
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From Lemma 1.3.8 it follows that if we let B be the set of g-uples (b1, . . . , bg)
such that 0 ≤ bi ≤ 3ei/2, bie(pi/pi) ∈ Z ∪ {3e(pi/3)/2}, then we have

Sα0(s) =
∑

(b1,...,bg)∈B
(ε1,...,εg)∈{0,1}g

∏
1≤i≤g

N(pi)d(bi−h(εi,bi,ei))e(pi/pi)es/e(pi/pi)(−1)
P
i εifα0

(∏
i

(piZK2)bi
)
.

Lemma 1.4.4. We have

Sα0(s) =
∑

(b1,...,bg)∈B

fα0

 ∏
1≤i≤g

(piZK2)bi

 ∏
1≤i≤g

(
N(pi)dbie(pi/pi)es/e(pi/pi)Q((piZK2)bi , s)

)
,

where Q((pZK2)b, s) is de�ned as follows. Set e = e(p/3), p an ideal of K2 above
p and pz an ideal of L above p, and de�ne s′ = s/e(p/p). Then:

• if e(pz/p) = 1, (hence e(p/3) is even) we have

Q((pZK2)b, s) =


0 if b = 0 ,
1/N(p)s

′
if b = 1/e(p/p) ,

1/N(p)s
′ − 1/N(p)2s′ if 2/e(p/p) ≤ b ≤ 3e/2− 1/e(p/p) ,

1− 1/N(p)2s′ if b = 3e/2 .

• if e(pz/p) = 2 (hence e(p/p) = 1) we have

Q((pZK2)b, s) =


1 if b = 0 ,
1− 1/N(p)s

′
if 1 ≤ b ≤ 3e/2− 3/2 ,

−1/N(p)s
′

if b = 3e/2− 1/2 ,
1 if b = 3e/2 .

Proof. Since the indices are independent, it is enough to prove the formulas
for g = 1. In this case we have

Sα0(s) =
∑

0≤a<3e/2−1/e(p/p) or a=3e/2
ae(p/p)∈Z∪{3e(p/3)/2}

N(p)dae(p/p)es/e(p/p)fα0

(
(pZK2)(a+h(0,a,e)))

)

−
∑

0≤a<3e/2−1/e(p/p) or a=3e/2
ae(p/p)∈Z∪{3e(p/3)/2}

N(p)dae(p/p)es/e(p/p)fα0

(
(pZK2)(a+h(1,a,e))

)
.

Thus,

Sα0(s) =
∑

0≤a<3e/2−1/e(p/p)
ae(p/p)∈Z

N(p)asfα0

(
(pZK2)(a+h(0,a,e))

)

+N(p)d3e/2esfα0

(
(pZK2)3e/2

)

−
∑

0≤a<3e/2−1/e(p/p)
ae(p/p)∈Z

N(p)asfα0

(
(pZK2)(a+h(1,a,e))

)
,
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so by an easy change of variables

Sα0(s) =
∑

h0≤b<3e/2−1/e(p/p)+h0
be(p/p)∈Z

N(p)(b−h0)sfα0

(
(pZK2)b

)

+N(p)d3e/2esfα0

(
(pZK2)3e/2

)

−
∑

h1≤b<3e/2−1/e(p/p)+h1
be(p/p)∈Z

N(p)(b−h1)sfα0

(
(pZK2)b

)
,

where h0 = 1, 1/2, 0 if e(pz/p) = 1, e(p/p) = 2, e(pz/p) = 2, respectively, and
h1 = 2/e(pz/p).

Looking at the coe�cients of fα0((pZK2)b)N(p)dbe(p/p)es/e(p/p) gives the for-
mulas for Q((pZK2)b, s).

De�nition 1.4.5. (1) We let B be the set of formal products of the form∏
pi|3Zk(piZK2)bi , where the bi are such that 0 ≤ bi ≤ 3e(pi/3)/2 and

e(pi/pi)bi ∈ Z ∪ {3e(pi/3)/2}.
This is the same as taking∏

pi|3ZK2
pi inert in K2/k

pbii

∏
pi|3ZK2

pi split in K2/k

(piτ2(pi))bi
∏

pi|3ZK2
pi rami�ed in K2/k

p2bi
i ,

in other words, the product of prime ideals p of K2 above 3 with exponents
b′ such that 0 ≤ b′ ≤ 3e(p/3)/2, b′ ∈ Z∪{3e(p/3)/2}, and which are stable
by τ2.

(2) We will consider any b ∈ B as an ideal of K2 where, by abuse of language,
we accept to have half powers of prime ideals of K2 and we will set bz =
bZL.

(3) If b =
∏

pi|3ZK2
pbi
′

i ∈ B, bi
′ = e(pi/pi)bi, we set

dNe(b) =
∏
pi|b

N(pi)dbi
′e .

We would now like to set

b =
∏

1≤i≤g

(piZK2)bi ∈ B

and rewrite the formulas as functions of b instead of the bi, but in doing so we
would lose the informations about the set of the pi (in particular we lose the
information about the pi for which bi = 0).

Thus, we let E = {p1, . . . , pg} ⊂ {p | 3Zk} to be the set of (distinct) prime
ideals of k above 3 not dividing aα, so that

aα =
∏
pi|3Zk
pi 6∈E

(piZK2)ri ,
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where as usual ri = 1/(e(pi/pi)). We obtain

∑
(a0,a1)∈J

Sα0(s)
N(aα)s

=
∑

E⊂{p|3Zk}

∑
(a0,a1)∈J

{p|3Zk,p-aα}=E

1
N(aα)s

∑
(b1,...,bg)∈B

fα0

 ∏
1≤i≤g

(piZK2)bi

 ·
·
∏
pi∈E

(Q((piZK2)bi , s)N(pdbie(pi/pi)es/e(pi/pi)i )) ,

so that∑
(a0,a1)∈J

Sα0(s)
N(aα)s

=
∑

E⊂{p|3Zk}

∑
b∈B

p|b⇒p∈E

dNebs
∏
pi∈E

Q((piZK2)bi , s)
∑

(a0,a1)∈J
{p|3Zk,p-aα}=E

fα0(b)
N(aα)s

.

It is easy to see that when bi = 0 we get

Q(pbi , s) =

{
1 if e(p/3) is odd
0 if e(p/3) is even,

so when e(pi/3) is odd we can omit the corresponding pi in the product, and
when e(pi/3) is even we get a zero term.

Thus we can write∑
(a0,a1)∈J

Sα0(s)
N(aα)s

=
∑

E⊂{p|3Zk}

∑
b∈B

p|b⇒p∈E
p∈E and e(p/3) even ⇒p|b

dNebs
∏
p|b

Q((pZK2)vp(b), s) ·

·
∑

(a0,a1)∈J
{p|3Zk,p-aα}=E

fα0(b)
N(aα)s

=
∑
b∈B

dNe(b)sPb(s)
∑

E⊂{p|3Zk}
p|b⇒p∈E

p-b and e(p/3) even ⇒p 6∈E

∑
(a0,a1)∈J

{p|3Zk,p-aα}=E

fα0(b)
N(aα)s

,

where Pb(s) =
∏
p|bQ((pZK2)vp(b), s), so that

∑
(a0,a1)∈J

Sα0(s)
N(aα)s

=
∑
b∈B

dNe(b)sPb(s)
∑

(a0,a1)∈J
(aα,b)=1

p-b and e(p/3) even ⇒p|aα

fα0(b)
N(aα)s

.

Now we have the following lemma.

Lemma 1.4.6. With the present notation, we have

(aα, 3ZK2) =
∏

p|3ZK2 , p-b
e(p/3) even

p .
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Proof. Both sides being squarefree ideals of K2 dividing 3ZK2 , we must
show that each prime ideal above 3 dividing one side divides the other. In one
direction this is clear: if p - b and e(p/3) is even then p | aα. Conversely, let
p | aα above 3. Since (aα, b) = 1 we already know that p - b. In cases (1), (3),
and (4) we have ρ ∈ K2 so e(p/3) = vp(3) = 2vp(1−ρ) is even. In cases (2) and
(5), if e(p/3) was odd, then by Corollary 1.3.2, p would be rami�ed in L/K2,
and in particular would not be split, so that p /∈ D3, contradicting Proposition
1.2.10, and proving the lemma.

Thus, we set the following de�nition:

De�nition 1.4.7. (1) For b as above we de�ne

re(b) =
∏

p|3ZK2 , p-b
e(p/3) even

p .

(2) We set d3 =
∏
p∈D3

p.

The above lemma states that (aα, 3ZK2) = re(b), and it is clear that if this
is the case then aα is coprime to b and that p - b, e(p/3) even implies that
p | aα. Furthermore, again by Proposition 1.2.10 since p | (aα, 3ZK2) implies
that p ∈ D3, we must have re(b) | d3. Note that by contraposition, this is clearly
equivalent to d′3 | b, where d′3 =

∏
p|3Zk, p/∈D3
e(p/3) even

p.

Thus we obtain∑
(a0,a1)∈J

Sα0(s)
N(aα)s

=
∑
b∈B

re(b)|d3

dNe(b)sPb(s)
∑

(a0,a1)∈J
(aα,3ZK2 )=re(b)

fα0(b)
N(aα)s

.

1.5 Computation of fα0
(b)

Recall that bz | 3
√
−3 and that the ai are coprime squarefree ideals such that

a0a
2
1 ∈ (I/I3)[T ] and a0a

2
1 ∈ Cl(L)3. We have also set a0a

2
1q

3
0 = α0ZL with

α0 ∈ (L∗/L∗3)[T ]. Changing q0 and α0 if necessary, we may assume that α0 is
coprime to bz, although this is not essential for the proof. Finally, recall that

fα0(b) =
∣∣{u ∈ S3(L)[T ], x3 ≡ α0u (mod ∗bz) soluble in L}

∣∣ ,
where we have replaced the congruence x3/(α0u) ≡ 1 (mod ∗bz) by the above
since we assume α0 coprime to bz.

Finally, recall that for each b ∈ B we have b = τ2(b).

To compute fα0(b), we will proceed by a series of lemmas.

De�nition 1.5.1. Set

Sb(L)[T ] = {u ∈ S3(L)[T ], x3 ≡ u (mod ∗bz) soluble} ,

where u is any lift of u coprime to bz, and the congruence is in L.
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Lemma 1.5.2. If fα0(b) 6= 0 then fα0(b) = |Sb(L)[T ]|.

Proof. Indeed, assume that x3
0 ≡ α0u0 (mod ∗bz) for some u0 ∈ S3(L)[T ].

The congruence x3 ≡ α0u (mod ∗bz) is thus equivalent to (x/x0)3 ≡ (u/u0)
(mod ∗bz), in other words to u/u0 ∈ Sb(L)[T ], so the set of possible u is equal
to u0Sb(L)[T ], whose cardinality is |Sb(L)[T ]|.

Lemma 1.5.3. Let a0, a1 as in condition (1) of Proposition 1.2.7. Then fα0(b) 6=
0 if and only if a0a

2
1 ∈ Clb(L)3.

Proof. The condition a0a
2
1 ∈ Clb(L)3 is equivalent to the existence of q1

and β1 ≡ 1 (mod ∗bz) such that a0a
2
1q

3
1 = β1ZL. Assume �rst that u exists,

so that x3
0 = α0uβ for some β ≡ 1 (mod ∗bz) and uZL = q3. It follows that

a0a
2
1q

3
0q

3 = α0uZL = (x3
0/β)ZL, so we can take q1 = q0q/x0 and β1 = 1/β ≡ 1

(mod ∗bz). Conversely, assume that a0a
2
1q

3
1 = β1ZL with β1 ≡ 1 (mod ∗bz).

Since a0a
2
1 ∈ (I/I3)[T ], we have t(β2) = γ3 for some γ ∈ L∗. It follows that

α0ZL = a0a
2
1q

3
0 = β1(q0/q1)3. Thus, u = α0/β2 is a virtual unit, and ut is a cube

of L since this is true for α0 and for β1. Thus u ∈ S3(L)[T ] and 13 ≡ β1 ≡ α0/u
(mod ∗bz), so fα0(b) 6= 0, proving the lemma.

Remark that when we suppose a0a
2
1 ∈ Clb(L)3 we have automatically a0a

2
1 ∈

Cl(L)3, so we just need to suppose a0a
2
1 ∈ (I/I3)[T ].

Lemma 1.5.4. Set Zb = (ZL/bz)∗. Then

|Sb(L)[T ]| = |(U(L)/U(L)3)[T ]||(Clb(L)/Clb(L)3)[T ]|
|(Zb/Z3

b)[T ]|
.

In particular

|S3(L)[T ]| = |(U(L)/U(L)3)[T ]||(Cl(L)/Cl(L)3)[T ]| .

Proof. Since this is now standard (see [12] and [18]) we only sketch the proof.
From Lemma 1.2.6 we have the exact sequence of F3[T ]-modules

1 −→ U(L)
U(L)3

−→ S3(L) −→ Cl(L)[3] −→ 1 ,

Taking the kernel by T thus keeps exactness, so we deduce that

|S3(L)[T ]| = |(U(L)/U(L)3)[T ]||(Cl(L)[3])[T ]| .

Since T has order dividing 4, it is coprime to 3, so it is well-known that the
�nite F3[T ] modules Cl(L)[3] and Cl(L)/Cl(L)3 are isomorphic, so in particular
(Cl(L)[3])[T ] ' (Cl(L)/Cl(L)3)[T ], proving the second formula of the lemma.
For the �rst, we have the exact sequence of F3[T ]-modules

1 −→ Sb(L) −→ S3(L) −→ Zb

Z3
b

−→ Clb(L)
Clb(L)3

−→ Cl(L)
Cl(L)3

−→ 1 ,

from which it follows that

|Sb(L)[T ]| = |S3(L)[T ]||(Clb(L)/Clb(L)3)[T ]|
|(Zb/Z3

b)[T ]||(Cl(L)/Cl(L)3)[T ]|
,
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giving the desired formula after replacing |S3(L)[T ]| by what we have computed
above.

The quantity |(Clb(L)/Clb(L)3)[T ]| will in fact disappear in subsequent com-
putations, and in any case cannot be computed more explicitly.
The quantity |(U(L)/U(L)3)[T ]| is given by the following lemma.

Lemma 1.5.5. For any number �eld K, denote by rk3(K) the 3-rank of the
group of units of K, in other words rk3(K) = dimF3(U(K)/U(K)3), so that
|U(K)/U(K)3| = 3rk3(K).

(1) With evident notation we have

rk3(K) =

{
r1(K) + r2(K)− 1 if ρ /∈ K,

r1(K) + r2(K) if ρ ∈ K.

(2) We have |(U(L)/U(L)3)[T ]| = 3r(U), where

r(U) =


rk3(k) in cases (1) and (4),

rk3(L)− rk3(k) in cases (2) and (3),

rk3(L) + rk3(k)− rk3(K2)− rk3(kz) in case (5).

Proof. (1) is clear from Dirichlet's theorem, so let us prove (2). Case (1) is
trivial, and it is immediate to see that in case (4) we have (U(L)/U(L)3)[T ] =
U(k)/U(k)3. For cases (2) and (3), we have the exact sequence

1 −→ U(k)
U(k)3

−→ U(K2)
U(K2)3

−→ U(K2)
U(K2)3

[τ2 + 1] −→ 1 ,

where the rightmost nontrivial map is induced by u 7→ τ2(u)/u, as well as the
exact sequence

1 −→ U(K2)
U(K2)3

−→ U(L)
U(L)3

−→ U(L)
U(L)3

[τ + 1] −→ 1 ,

which enables us to conclude. Finally, for case (5) we have

1 −→ U(K2)
U(K2)3

[τ2 + 1] −→ U(L)
U(L)3

[τ2 + 1] −→ U(L)
U(L)3

[τ + 1, τ2 + 1] −→ 1 ,

and

1 −→ U(kz)
U(kz)3

−→ U(L)
U(L)3

−→ U(L)
U(L)3

[τ2 + 1] −→ 1

so we can conclude.

The last quantity that we need to compute is |(Zb/Z
3
b)[T ]|.

Lemma 1.5.6. Assume that b is an ideal of B, stable by τ2 and such that
bz | 3

√
−3, and de�ne

cz =
∏

pz⊂L
pz|bz

p
dvpz (bz)/3e
z .

Then

|(Zb/Z
3
b)[T ]| =

∣∣∣∣ czbz [T ]
∣∣∣∣ .
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Proof. This has also been proved in a slightly di�erent context in [18], but
again for completeness we sketch the proof. We �rst claim that we have the
exact sequence

1 −→ 1 + cz

1 + bz
−→ Zb −→ Z3

b −→ 1 ,

where the map to Z3
b is of course cubing. Indeed, �rst note that if x ∈ cz then

(1 +x)3 = 1 + 3x+ 3x2 +x3 ≡ 1 (mod bz) since x3 ∈ bz by de�nition of cz, and

vpz (3x) ≥ e(pz/3) + vpz (bz)/3 ≥ vpz (bz)

since bz | 3
√
−3, so that (1 + cz)/(1 + bz) is in the kernel of the cubing map.

Conversely, assume that x3 ≡ 1 (mod bz), so that
∏

0≤j≤2(x−ρj) ∈ bz. Thus for
any prime pz | bz we must have vpz (x−ρj) ≥ vpz (bz)/3 for at least one j, so that
for that j we have vpz (x−ρj) ≥ vpz (cz). Since vpz (cz) ≤ e(pz/3)/2 = vpz (1−ρ),
it follows that for all j we will have vpz (x−ρj) ≥ vpz (cz), and in particular x ≡ 1
(mod cz).

Thus the F3[T ]-modules (1 + cz)/(1 + bz) and Zb[3] are isomorphic, and
since 2 and 3 are coprime once again the latter is F3[T ]-isomorphic to Zb/Z

3
b , so

in particular (Zb/Z
3
b)[T ] ' ((1 + cz)/(1 + bz))[T ]. The use of the Artin�Hasse

logarithm and exponential maps (here simply x−x2/2 and x+x2/2) shows that
(1 + cz)/(1 + bz) is isomorphic to the additive group cz/bz, so we conclude

Lemma 1.5.7.

|(Zb/Z
3
b)[T ]| =



|cz/bz| in case (1)
|cz/bz|

|(cz ∩ k)/(bz ∩ k)|
in cases (2) and (3)

|(cz ∩ k)/(bz ∩ k)| in case (4)
|cz/bz||(cz ∩ k)/(bz ∩ k)|

|(cz ∩K2)/(bz ∩K2)||(bz ∩ kz)/(cz ∩ kz)|
in case (5).

Proof. Note that ∣∣∣∣ czbz [τ ′ − 1]
∣∣∣∣ =

∣∣∣∣∣ cz ∩ Lτ
′

bz ∩ Lτ ′

∣∣∣∣∣ ,
where τ ′ ∈ {τ, τ2} and Lτ

′
is the subextension of L stable by τ ′.

Moreover, we have the exact sequence

1 −→ cz

bz
[τ ′ − 1] −→ cz

bz
−→ cz

bz
[τ ′ + 1] −→ 1,

so we can conclude.

Lemma 1.5.8. In case (5) we have

|(Zb/Z
3
b)[T ]| =

∏
p⊂k
p|b

N(p)(2b/3+x(b,p)) ,

where x(b, p) = r3(2b)/3 if e(pz/p) = 1, x(b, p) = r3
′(b)/3 if e(pz/p) = 2 and

b < 3e(p/3)/2, x(b, p) = −1/(3r3(2b)) if e(p/p) = 2 and 2b 6≡ 0 (mod 3), and
r3(b) is the class modulo 3 of b in {0, 1, 2} and r3

′(b) is the class of b modulo 3
in {−1, 0, 1}.
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Proof. By multiplicativity it is enough to prove the formulas for a prime p
of k dividing b.

• If e(pz/p) = 1 then there is no rami�cation in L/k, so bz =
∏

pz|b pbz,

cz =
∏

pz|b p
db/3e
z , and similarly bz ∩K2 =

∏
p|b pb, cz ∩K2 =

∏
p|b pdb/3e

bz ∩ k =
∏
p|b p

b, cz ∩ k =
∏
p|b p

db/3e bz ∩ kz =
∏

p′|b,p′⊂kz p′b, cz ∩ kz =∏
p′|b p′db/3e.

MoreoverNL/Q(pZL) = N(p)4 andNK2/Q(pZK2) = Nkz/Q(pZkz ) = N(p)2.

So we get

|(Zb/Z
3
b)[T ]| = N(p)b−db/3e = N(p)(2b/3+r3(2b)/3).

• If e(pz/p) = 2 then p is rami�ed in L/K2, e(p/3) is odd and so p is also
rami�ed in kz/k.

We have bz∩K2 =
∏

p|b pdbe, cz∩K2 =
∏

p|b pdd2b/3e/2e; bz∩k =
∏
p|b p

dbe,

cz ∩ k =
∏
p|b p

dd2b/3e/2e and bz ∩ kz =
∏

p′|b p′
2b, cz ∩ kz =

∏
p′|b p′

d2b/3e.

Now, NL/Q((pZL)1/2) = NK2/Q(pZK2) = N(p)2 and Nkz/Q((pZkz )1/2) =
N(p).

So we obtain

|(Zb/Z
3
b)[T ]| = N(p)2b−d2b/3e−dbe+dd2b/3e/2e = N(p)bbc−bd2b/3e/2c.

In particular, when b = 3e(p/3)/2 we obtain

|(Zb/Z
3
b)[T ]| = N(p)e(p/3),

and if b < 3e(p/3)/2, then b ∈ Z and we obtain

|(Zb/Z
3
b)[T ]| = N(p)b−bd2b/3e/2c = N(p)2b/3+r3

′(b)/3.

• When e(p/p) = 2 then p is rami�ed in K2/k and it can be rami�ed or not
in kz/k depending on e(p/3) parity.

We have bz ∩K2 =
∏

p|b p2b, cz ∩K2 =
∏

p|b pd2b/3e, bz ∩ k =
∏
p|b p

dbe,

cz ∩ k =
∏
p|b p

dd2b/3e/2e and bz ∩ kz =
∏

p′|b p′
2b, cz ∩ kz =

∏
p′|b p′

d2b/3e

if e(p/3) is odd, otherwise we get bz ∩ kz =
∏

p′|b p′
dbe and cz ∩ kz =∏

p′|b p′
dd2b/3e/2e.

So we have NL/Q((pZL)1/2) = N(p)2, NK2/Q((pZK2)1/2) = N(p) and

Nkz/Q(pZ1/2
kz

) = N(p) if e(p/3) is odd, otherwise Nkz/Q(pZkz ) = N(p)2.

So if e(p/3) is odd we obtain

|(Zb/Z
3
b)[T ]| = N(p)dbe−dd2b/3e/2e

and if e(p/3) is even we have

|(Zb/Z
3
b)[T ]| = N(p)bbc−bd2b/3e/2c

which leads to the formulas, after some calculations.

This �nishes the computation of fα0(b).
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1.6 Final Form of the Dirichlet Series

We can now put together all the work that we have done. Recall that we have
computed |U(L)/U(L)3[T ]| in Lemma 1.5.5 and |(Zb/Z

3
b)[T ]| in Lemmas 1.5.7

and 1.5.8. Moreover, B and dNe are de�ned in De�nition 1.4.5 and Pb(s) =∏
p|bQ((pZK2)vp(b), s), where Q(pb, s) is de�ned in Lemma 1.4.4. Finally, recall

that we have

Φ(s) =
1
2

+
∑

K∈F(K2)

1
N(f(K/k))s

.

Theorem 1.6.1. Set d3 =
∏
p∈D3

p, and for any ideal b, set for simplicity
Gb = (Clb(L)/Clb(L)3)[T ]. We have

Φ(s) =
|(U(L)/U(L)3)[T ]|

2 · 3(3/2)[k:Q]s
∏

p|3Zk,
e(p/3) odd

N(p)s/2
·

·
∑
b∈B

re(b)|d3

(
dNe(b)
N(re(b))

)s
Pb(s)

|(Zb/Z3
b)[T ]|

∑
χ∈cGb

F (b, χ, s) ,

where

F (b, χ, s) =
∏

p|re(b)
p∈D′3(χ)

2
∏

p|re(b)
p∈D3\D3

′(χ)

(−1)
∏

p∈D′(χ)

(
1 +

2
N(p)s

) ∏
p∈D\D′(χ)

(
1− 1
N(p)s

)
,

where in cases (1) and (4), D′(χ) (respectively D′3(χ)) is the set of p ∈ D
(respectively p ∈ D3) such that χ(pZL) = 1, while in the other cases it is the set
of p ∈ D (respectively p ∈ D3) such that χ(pz) = χ(τ ′(pz)) if pZL = pzτ

′(pz),
τ ′ ∈ {τ, τ2} or χ(pzττ2(pz)) = χ(τ(pz)τ2(pz)) if pZL = pzτ(pz)τ2(pz)ττ2(pz).

Proof. We have shown above that

Φ(s) =
1

2 · 3(3/2)[k:Q]s
∏

p|3Zk,
e(p/3) odd

N(p)s/2
∑

(a0,a1)∈J

Sα0(s)
N(aα)s

,

where J is a suitable set of pairs of ideals (a0, a1), and we have computed that∑
(a0,a1)∈J

Sα0(s)
N(aα)s

=
∑
b∈B

re(b)|d3

dNe(b)sPb(s)
∑

(a0,a1)∈J
(aα,3ZK2 )=re(b)

fα0(b)
N(aα)s

.

where Pb(s) is given by Lemma 1.4.4. In the preceeding section we have seen
that fα0(b) 6= 0 if and only if a0a

2
1 ∈ Clb(L)3 (so we only need to assume

condition (1) of Lemma 1.2.8), and in that case that

fα0(b) =
|(U(L)/U(L)3)[T ]||(Clb(L)/Clb(L)3)[T ]|

|(Zb/Z3
b)[T ]|

.

Set Gb = (Clb(L)/Clb(L)3)[T ]. Let a0 and a1 be as in condition (a) of Proposi-
tion 1.2.7. We have a0a

2
1 ∈ Clb(L)3 if and only if χ(a0a

2
1) = 1 for all characters
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χ ∈ Ĝb. The number of such characters being equal to |Gb|, by orthogonality
of characters we have

Φ(s) =
|(U(L)/U(L)3)[T ]|

2 · 3(3/2)[k:Q]s
∏

p|3Zk,
e(p/3) odd

N(p)s/2
·

·
∑
b∈B

re(b)|d3

dNe(b)sPb(s)
|(Zb/Z3

b)[T ]|
∑
χ∈cGb

H(b, χ, s) ,

with

H(b, χ, s) =
∑

(a0,a1)∈J′
(aα,3ZK2 )=re(b)

χ(a0a
2
1)

N(aα)s
,

where J ′ is the set of pairs of coprime squarefree ideals of L, satisfying the
condition (1) of Lemma 1.2.8, with no class group condition.

Thus

H(b, χ, s) =
χ(re(b))
N(re(b))s

∑
(a,3ZL)=1

a squarefree
τ(a)=τ2(a)=a

χ(a)
N(a)s

∑
a1|are(b), a1∈J′′

χ(a1) ,

where J ′′ is the set of squarefree ideals a1 such that a1 is stable by τ2 in case
(4), a1τ

′(a1) = are(b) for each nontrivial τ ′ ∈ {τ, τ2} in the other cases.
Let us de�ne G(χ, p) by:

G(χ, p) =


1 + χ(pZL) in cases (1) and (4), and otherwise :

χ(pz) + χ(τ ′(pz)) when pZL = pzτ
′(pz)

χ(pzττ2(pz)) + χ(τ(pz)τ2(pz)) when pZL = pzτ(pz)τ2(pz)ττ2(pz).

Since a is coprime to 3, by multiplicativity we have H(b, χ, s) = S1S2 with

S1 =
χ(re(b))
N(re(b))s

∏
p|re(b)

G(χ, p) and

S2 =
∑

(a,3ZL)=1
a squarefree
τ(a)=τ2(a)=a

χ(a)
N(a)s

∏
p|a

G(χ, p) =
∏
p∈D

(
1 +

χ(pZL)G(χ, p)
N(p)s

)
,

where D is given by De�nition 1.2.9.
Now, χ takes only values 1, ρ, and ρ2, so looking at the possible values for

G(χ, p), in cases (1) and (4) we have just to distinguish wheter χ(pZL) = 1 or
not, while in the other cases we need to take also into account the values of
χ(pz), χ(τ ′(pz)) or χ(pzττ2(pz)), χ(τ(pz)τ2(pz)), so we obtain

S1 =
1

N(re(b))s
∏

p|re(b)
p∈D′3(χ)

2
∏

p|re(b)
p∈D3\D3

′(χ)

(−1) ,

S2 =
∏

p∈D′(χ)

(
1 +

2
N(p)s

) ∏
p∈D\D′(χ)

(
1− 1
N(p)s

)
.
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From the previous theorem we obtain :

Theorem 1.6.2. In cases (2) and (3), set K ′2 = L, and in all cases denote by
d(K ′2/k) the relative discriminant of K ′2/k. Let us de�ne

c1 =
|(U(L)/U(L)3)[T ]|

2 · 3(3/2)[k:Q]
∏

p|3Zk
e(p/3) odd

N(p)1/2
,

c2 =
∑
b∈B

re(b)|d3

dNe(b)
N(re(b))

Pb(1)
|(Zb/Z3

b)[T ]|
2ω(re(b)) ,

c3 =
∏
p⊂k

(
1− 3
N(p)2

+
2

N(p)3

) ∏
p|3Zk

(
1 +

2
N(p)

)−1

,

c4 =
1

ζk(2)

∏
p∈D

(
1− 2
N(p)(N(p) + 1)

) ∏
p|d(K′2/k)

(
1− 1
N(p) + 1

)
,

where ω(re(b)) =
∑
p|re(b) 1.

• In cases (1) and (4), around s = 1 we have

Φ(s) =
C(K2/k)
(s− 1)2

+
C(K2/k)D(K2/k)

s− 1
+O(1) ,

with constants

C(K2/k) = c1c2c3(Ress=1 ζk(s))2 and

D(K2/k) = 2γk + lim
s→1

G′(s)
G(s)

where

G(s) =
Φ(s)
ζk(s)2

and γk = lim
s→1

(
ζk(s)

Ress=1 ζk(s)
− 1
s− 1

)
,

and where lims→1G
′(s)/G(s) can easily be computed more explicitly if

desired.

In addition, using the notation given at the beginning of this chapter, as
X →∞, for all ε > 0 we have

M(K2/k,X) = C(K2/k)X(log(X) +D(K2/k)− 1) +O(Xα+ε), . (1.1)

for some α < 1 (see Section 1.7).

• In cases (2), (3), and (5) we have

Φ(s) =
C(K2/k)
(s− 1)

+O(1),

with
C(K2/k) = c1c2c4(Ress=1 ζK′2(s)) ,

and for all ε > 0 we have

M(K2/k,X) = C(K2/k)X +O(Xα+ε), (1.2)

for some α < 1 (see Section 1.7).
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Proof. It is easy to see that when χ is not the trivial character, the functions
F (b, χ, s) are holomorphic for Re(s) > 1/2, so do not occur in the polar part
at s = 1. On the other hand, since re(b) | d3, for χ = 1 we have F (b, 1, s) =

2ω(re(b))P (s), where P (s) =
∏
p∈D

(
1 +

2
N(p)s

)
, so in cases (1) and (4) we get

P (s) =
ζk(s)2

∏
p⊂k

(
1− 3
N(p)2s

+
2

N(p)3s

)
∏
p|3Zk

(
1 +

2
N(p)s

) ,

so we obtain C(K2/k) = c1c2c3(Ress=1 ζk(s))2. Now to compute D(K2/k) we
remark that

D(K2/k) = lim
s→1

(
Φ′(s)
Φ(s)

+
2

s− 1

)
,

and that
2

s− 1
= −2ζ ′k(s)

ζk(s)
+ 2γk +O((s− 1)),

where R = Ress=1 ζk(s), so

D(K2/k) = lim
s→1

(
Φ′(s)
Φ(s)

− 2ζ ′k(s)
ζk(s)

+ 2γk

)
.

Now we remark that
Φ′(s)
Φ(s)

− 2ζ ′k(s)
ζk(s)

=
G′(s)
G(s)

,

where G(s) =
F (s)
ζk(s)2

, so we obtain

D(K2/k) = lim
s→1

G′(s)
G(s)

+ 2γk .

In cases (2), (3) and (5) we obtain with evident notation

P (s) =

ζK′2(s)
∏(K′2/k

p

)
=1

(
1− 3
N(p)2s

+
2

N(p)3s

)
∏(K′2/k

p

)
=0

(1− 1/N(p)s)−1∏(K′2/k
p

)
=−1

(1− 1/N(p)2s)−1

so the formula for the polar part of Φ(s) follows after an immediate computation,
with c4 given by

c4 =
∏

(K′2/k
p

)
=1

(
1− 3
N(p)2

+
2

N(p)3

)

∏
(K′2/k

p

)
=0

(
1− 1
N(p)

) ∏
(K′2/k

p

)
=−1

(
1− 1
N(p)2

)
.

Indeed, note that since in cases (2) and (3) we have set K ′2 = L, by Proposition

1.2.10 the condition p ∈ D is equivalent to
(K′2/k

p

)
= 1.
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Now we have evidently 1/ζk(2) = P−1P0P1 with

Pε =
∏

(K′2/k
p

)
=ε

(
1− 1
N(p)2

)
,

so replacing P−1 by (ζk(2)P0P1)−1 in the formula for c4 gives the formula of the
corollary.

Finally, since our Dirichlet series have nonnegative and polynomially bounded
coe�cients, the asymptotic results follow from a general (and in this case easy)
Tauberian theorem. For the error term O(Xα) with an explicit α < 1, we refer
to the following section.

Remark. The asymptotic (1.1) for k = Q (corresponding to cyclic cubic �elds)
is due to Cohn [21], and over a general number �eld to Cohen, Diaz y Diaz and
Olivier [18]. The equation (1.2) over Q is certainly also in the literature (at
least its main term), but over a general number �eld it seems to be new.

1.7 Error term of the asymptotic formula

The aim of this section is to compute the error term in the asymptotic formulas
(1.1) and (1.2).

First of all, we need some properties of the Dirichlet series Φ(s).

Lemma 1.7.1. For the Dirichlet series Φ(s) =
∑∞
n=1 ann

−s we have |an| � nε,
for every ε > 0.

Proof. This can be proved just referring to [27, Lemma 6.1], who prove the
bound for the number of cubic extensions with �xed norm of the discriminant.

We give a direct proof for the convenience of the reader.
The only part we need to bound is F (b, χ, s) and in particular we need to

bound the Dirichlet coe�cients bn of

∞∑
n=1

bnn
−s :=

∏
p∈D′(χ)

(
1 +

2
N(p)s

) ∏
p∈D\D′(χ)

(
1− 1
N(p)s

)
, Re(s) > 1.

but for every n we just need to count the number of distinct primes (∈ Z)
dividing n (that is ω(n)) and for each one of those we will have at most [k : Q]
prime ideals of k above it, so we obtain

|bn| � 2ω(n)[k:Q]

and since ω(n) ≤ (1 + o(1)) logn
log logn (for n→∞) ([51, �5.3]) we obtain

|bn| � nε, ∀ε > 0,

but |an|/|bn| is bounded, and we conclude that |an| � nε, for all ε > 0.

So Φ(s) is absolutely convergent for Re(s) > 1.
Let us de�ne S(x) =

∑
n≤x an and S∗(x) =

∑
n<x an + 1

2ax, where ax is
de�ned to be 0 if x ∈ R \ N (x ≥ 0).
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Our aim is to compute S(x), for this we will need some complex analysis results.
Let us �x δ > 0, set κ = 1 + δ, κ0 = 1/2 + δ. By Perron formula [51, �2.1,

Théorème 1], we have

S∗(x) =
1

2πi

∫ κ+i∞

κ−i∞
Φ(s)xss−1ds, (x > 0)

and the e�ective formula [51, �2.1, Théorème 2]

S(x) =
1

2πi

∫ κ+iT

κ−iT
Φ(s)xss−1ds+O

(
xκ

∞∑
n=1

|an|
nκ(1 + T | log(x/n)|)

)
, T ≥ 1.

Let Γ be the border of the rectangle of vertices κ0 − iT , κ0 + iT , κ + iT ,
κ− iT .

S(x) =
1

2πi

(∫
Γ

Φ(s)xss−1ds−B(T )−B(−T )− C
)

+O(A),

where

A = xκ
∞∑
n=1

|an|
nκ(1 + T | log(x/n)|)

B(t) =
∫ κ+it

κ0+it

Φ(s)xss−1ds

C =
∫ κ0+iT

κ0−iT
Φ(s)xss−1ds.

We have
1

2πi

∫
Γ

Φ(s)xss−1ds = Ress=1

(
Φ(s)xs

s

)
.

So we obtain

S(x) = Ress=1

(
Φ(s)xs

s

)
+ E,

where the error term E is given by

E = E(δ, T ) = − 1
2πi

(B(T ) +B(−T ) + C) +O(A).

To bound this error term we will need to bound Φ(s) polynomially in Im(s) in
the strip 1

2 ≤ Re(s) ≤ 1. We will be content with the simplest such bound,
namely the convexity bound (Phragmén-Lindelöf's principle), but it is possible
to improve it for certain classes of base �elds k.

By [38, (5.20)], we have

s− 1
s+ 1

ζk(s)� q(ζk, s)(1−σ)/2+ε, for all ε > 0, (1.3)

where in our case the analytic conductor q(ζk, s) is less than |dk| (|t|+4)[k:Q] [38,
�5.10, p. 125]. The implied constant only depends on the �eld degree and ε.

In particular for |t| ≥ 1 we have

ζk(s)� |t|µk(σ)+ε, s = σ + it, (1.4)

for some µk(σ). We can for instance use µk(σ) = (1 − σ)[k : Q]/2, and the
implied constant now depends on the �eld discriminant and ε : the dependence
on the degree is no longer needed by Odlyzko's bound : [k : Q] = O(log |dk|).
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Lemma 1.7.2. For all s = σ + it, 1
2 + δ ≤ σ ≤ 1 + δ, |t| ≥ 1, we have

|Φ(s)| � |t|µ(σ)+ε, for all ε > 0,

where µ(σ) = 0 for σ > 1 and µ(σ) is convex and decreasing in the strip
0 < σ < 1. A possible choice for µ is µ(σ) = 2µk(σ).

Proof. We only need to bound |F (b, χ, s)|. When χ is non trivial, F (b, χ, s)
is holomorphic for Re(s) > 1

2 , so we just need to deal with the case χ = χ0

the trivial character. In this case we obtain F (b, 1, s) = 2ω(re(b))P (s), where

P (s) =
∏
p∈D

(
1 +

2
N(p)s

)
so in cases (1) and (4) we get

P (s) =
ζk(s)2

∏
p⊂k

(
1− 3
N(p)2s

+
2

N(p)3s

)
∏
p|3Zk

(
1 +

2
N(p)s

) ,

while in cases (2), (3) and (5) we obtain with evident notation

P (s) =

ζK′2(s)
∏(K′2/k

p

)
=1

(
1− 3
N(p)2s

+
2

N(p)3s

)
∏(K′2/k

p

)
=0

(1− 1/N(p)s)−1∏(K′2/k
p

)
=−1

(1− 1/N(p)2s)−1 .

The products in the formula are holomorphic for Re(s) > 1/2, and we can
extend ζK′2 to a meromorphic function in this vertical strip so that

|F (b, 1, s)| � |ζK′2(s)| � |ζ2
k(s)|

and we conclude by (1.4).

Our goal is the following proposition :

Proposition 1.7.3. The error term E satis�es

|E| �ε,dk x
α+ε, for all ε > 0,

where µ is as in Lemma 1.7.2 and

α = 1− 1
2
(
1 + µ

(
1
2

)) .
The implied constant only depends on ε and the �eld discriminant.

In order to prove this proposition, we need to bound |A|, |B(±T )| and |C|. We
may assume x ≥ 1.

Lemma 1.7.4. We have

|A| �δ
xκ

T
+
x

T
log T.
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Proof. Let us write A = A1 + A2, where A2 is the contribution of the n in
the interval [ 1

2x, 2x], and A1 is the contribution of all the other n.
For n not in the interval [ 1

2x, 2x] we have | log(x/n)| > log 2, hence

|A1| ≤
xκ

T
log 2

∞∑
n=1

|an|
nκ

,

but now the sum is exactly Φ(κ) (remember that the an ≥ 0), which is conver-
gent for κ > 1, so |A1| �δ

xκ

T .
It remains to deal with the n in the interval [ 1

2x, 2x].
Let us suppose for simplicity that x is an integer, and let us write n = x+h,

where |h| < x.
We have that | log(x/n)| = | log(1 + h

x )| � |h|
x , since

|h|
x < 1.

A2 =
∑

x/2≤n≤2x

xκ

nκ
|an|

1 + T | log(x/n)|
�ε (2x)ε

∑
−x/2≤h≤x

1
1 + T |h|/x

,

where we use x
n = O(1) and |an| = Oε(nε). Finally∑

−x/2<h≤x

1
1 + T |h|/x

≤ 2
∑

0≤h≤x

1
1 + Th/x

� 1 +
∑

1≤h≤x/T

1 +
∑

x/T<h≤x

x

Th

� 1 +
x

T
+ x

log T
T

.

So |A2| � x
T log T , and we conclude.

Lemma 1.7.5. For all |T | ≥ 1, we have

|B(±T )| �ε,dk

( x

Tµ(0)

)κ
T (µ(0)−1)+ε,

where the implied constant only depends on ε and the �eld discriminant.

Proof. We have

B(t) =
∫ κ

κ0

xσ+itΦ(σ + it)
σ + it

dσ,

hence

|B(t)| �ε,dk

∫ κ

κ0

xσ|t|µ(σ)+ε dσ

|t|
, for |t| ≥ 1.

By convexity µ(σ) ≤ µ(0)− σµ(0). So

|B(t)| �ε,dk |t|(µ(0)−1)+ε

∫ κ

κ0

(
x

|t|µ(0)

)σ
dσ ≤ |t|(µ(0)−1)+ε|κ− κ0|

(
x

|t|µ(0)

)κ
.

Since |κ− κ0| = 1/2, the result follows.

Lemma 1.7.6. We have

|C| �ε,dk x
κ0Tµ(κ0)+ε.
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Proof. Now let us estimate

C =
∫ T

−T
xκ0+itΦ(κ0 + it)(κ0 + it)−1i dt.

Hence

|C| �ε,dk

∫ 1

0

xκ0 |Φ(κ0 + it)| dt
κ0

+
∫ T

1

xκ0 |t|µ(κ0)+ε dt

|t|
.

Using (1.3) and κ0 > 1/2 we obtain∫ 1

0

|Φ(κ0 + it)| dt
κ0
�dk 1.

Finally

C �ε,dk x
κ0Tµ(κ0)+ε

∫ T

1

dt

t
�ε,dk x

κ0Tµ(κ0)+2ε,

for all ε > 0.

Proof of the Proposition 1.7.3. Thanks to the previous lemmas, we conclude
that the error term

E = − 1
2πi

(B(T ) +B(−T ) + C) +O(A)

satis�es

|E| �δ,ε,dk

(
xκ

T
+
x

T
log T

)
+
( x

Tµ(0)

)κ
T (µ(0)−1)+ε + xκ0Tµ(κ0)+ε.

Below, we will choose T = xτ for some τ > 0. Since κ > 1 we can then simplify

|E| �δ,ε,dk

xκ

T
+ xκ0Tµ(κ0)+ε.

The best error term is obtained when we choose

T = x
κ−κ0

1+µ(κ0) :

recalling that κ− κ0 = 1/2, we then obtain

|E| �δ,ε,dk x
α+ε,

where

α = κ− 1
2 (1 + µ (κ0))

. (1.5)

Since µ is decreasing, we have µ(κ0) ≤ µ(1/2), hence

α ≤ κ− 1
2 (1 + µ(1/2))

. (1.6)

We then let δ = ε and the result follows.

In particular when k = Q we can take µ(1/2) = 1/2, and we obtain an error
term |E| �ε x

2/3+ε.
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Remark. For k = Q we used the convexity bound

ζ(s)�ε t
(1−σ)/2+ε.

Using subconvexity bounds, for instance ζ(1/2 + it)�ε t
1/6+ε ([38, page 101]),

we would get better error terms.
Over an arbitrary number �eld k the convexity bound gives µk(1/2) = d/4,

where d = [k : Q], so the error term in Proposition
gets bigger, but we still get a power saving in the error term, since we obtain

O(X1−β), for some β > 0.

Corollary 1.7.7 (of Proposition 1.7.3).

(1) Unconditionally, the error term is

E �ε,dk x
1−1/(2+[k:Q])+ε, for all ε > 0.

(2) Under Lindelöf Hypothesis, the error term is

E �ε x
1/2+ε, for all ε > 0.

Proof. The �rst point follows from Proposition 1.7.3, (1.4) with µk(1/2) =
[k : Q]/4, and µ(1/2) = 2µk(1/2). Under Lindelöf Hypothesis, we have µ(σ) = 0
for every σ > 1/2.

In particular, Corollary 1.7.7 holds under the GRH [38, Corollary 5.20]. We
sum up the work of this section in a slightly more general proposition.

Proposition 1.7.8. Let F (s) =
∑∞
n=1 ann

−s be a Dirichlet series which is
absolutely convergent for Re(s) > 1, which can be extended meromorphically to
Re(s) > 1/2 with a pole of order k ≥ 1 at s = 1 and no other pole in the strip
1
2 < Re(s) < 1. In addition, assume the following:

(1) The coe�cients an are nonnegative, and for all ε > 0 we have

an �ε n
ε .

(2) F (s) is a function of �nite order in the vertical strip 1
2 < σ ≤ 1 : we have

|F (σ + it)| �ε |t|µ(σ)+ε, when |t| ≥ 1, for all ε > 0,

where µ(1) = 0, and µ(σ) is convex and decreasing in the strip.

(3) The integral ∫ 1

0

|F (σ + it)| dt

is bounded independently of 1
2 < σ < 1

2 + δ, for some δ > 0.

Then for all ε > 0, we have∑
n≤x

an = Ress=1

(
F (s)

xs

s

)
+O(xα+ε) ,

where

α = 1− 1
2 (1 + µ(1/2))

. (1.7)

Proof. Straightforward from the previous section.
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1.8 Special Cases: k = Q, Cases (2), (4), and (5)

The computations that we have done are not very di�cult, and extremely similar
to those of [18], but still they are quite complex, and it is very easy to make
mistakes. In addition, there are many di�erent cases. It is thus essential to
compute some special cases for each. We begin by the simplest for k = Q, and
since ρ /∈ k only cases (2), (4), and (5) occur.

1.8.1 Case (2): Cyclic Cubic Extensions

This case is classical (see [21]), but we treat it nonetheless. Here K2 = Q and
L = Q(

√
−3). By Lemma 1.5.5 we have |(U(L)/U(L)3)[T ]| = 3, [K2 : Q] = 1,

and if p3 =
√
−3ZL is the unique ideal above 3, the possible ideals bz are pj3

for j = 0, 2, and 3, with corresponding ideals cz equal to ZL, p3, and p3. Thus,
|cz/bz| = 1, 3, 9, and |(cz ∩Q)/(bz ∩Q)| = 1, 1, 3, so by Lemma 1.5.7 we have
|(Zb/Z

3
b)[T ]| = 1, 3, 3. Since e(3/3) = 1, re(b) is always trivial, and we have

respectively dNe(b)s = 1, 3s, 32s, and Pb(s) = 1, −1/3s, 1. By De�nition 1.2.9
we have D3 = ∅, and D is the set of primes p ≡ 1 (mod 3). Finally, an easy
computation shows that Gb is trivial for all b, so the sum over χ of the functions
F (b, χ, s) is always equal to F (s) =

∏
p≡1 (mod 3)(1 + 2/ps). We deduce that,

with evident notation

Φ(s) =
3/2
32s

(1, 3s, 32s)(1,−1/3s, 1)
(1, 3, 3)

F (s) =
1
2

(1 + 2/32s)F (s) .

We have thus proved the following:

Proposition 1.8.1. We have∑
K/Q cyclic cubic

1
f(K/Q)s

= −1
2

+
1
2

(
1 +

2
32s

) ∏
p≡1 (mod 3)

(
1 +

2
ps

)
.

Corollary 1.8.2. If, as above, M(Q/Q, X) denotes the number of cyclic cubic
�elds K up to isomorphism with f(K/Q) ≤ X, for all ε > 0 we have

M(Q/Q, X) = C(Q/Q)X +O(X2/3+ε) with

C(Q/Q) =
11
√

3
36π

∏
p≡1 (mod 3)

(
1− 2

p(p+ 1)

)
= 0.1585282583961420602835078203575 . . .

1.8.2 Case (4): Pure Cubic Fields

In case (4), we have K2 = Q(ρ) = Q(
√
−3), so that L = K2, and K/Q is a pure

cubic �eld, in other words K = Q( 3
√
m).

By Lemma 1.5.5 we have |(U(L)/U(L)3)[T ]| = 1, [K2 : Q] = 2, and since
p3 =

√
−3ZL is the only ideal above 3, the possible ideals b = bz are b = pj3

for 0 ≤ j ≤ 3 (this time including j = 1), all of course stable by τ2, with
corresponding ideals c = cz equal to ZL, p3, p3, and p3. Thus by Lemma 1.5.7
we have |(Zb/Z

3
b)[T ]| = (cz ∩ Q)/(bz ∩ Q)| = 1, 1, 1, 3. By De�nition 1.2.9

we have D3 = {3} and D is the set of all primes p 6= 3, so that d3 = 3Z. We

29



have respectively dNe(b)s = 1, 3s/2, 3s, 33s/2, N(re(b))s = 3s/2, 1, 1, 1, and the
condition re(b) | d3 is always satis�ed. Since e(p/3) = 2, we have Pb(s) = 1,
1/3s/2, 1/3s/2 − 1/3s, 1− 1/3s. If χ = χ0 is the trivial character, we thus have
F (pj3, χ0, s) = F (s) =

∏
p 6=3(1 + 2/ps) for j ≥ 1, while F (ZK2 , χ0, s) = 2F (s).

Thus, with the same evident notation as the one used above, the contribution
of the trivial characters is equal to

Φ0(s) =
1/2

33s/2

(1/3s/2, 3s/2, 3s, 33s/2)(2, 1/3s/2, 1/3s/2 − 1/3s, 1− 1/3s)
(1, 1, 1, 3)

F (s)

=
1
6

(
1 +

2
3s

+
6

32s

)∏
p 6=3

(
1 +

2
ps

)
.

An easy computation shows that the group Gb is trivial for b = pj3 with 0 ≤
j ≤ 2, but has order 3 for b = p3

3. Thus, we must simply add the contribution
of the two conjugate nontrivial characters of order 3 of Gp3

3
. By de�nition, if χ

is one of these characters we have

F (p3
3, χ, s) =

∏
χ(p)=1

(1 + 2/ps)
∏

χ(p)6=1

(1− 1/ps) .

The condition χ(p) = 1 is easily seen to be equivalent to p ≡ ±1 (mod 9), so we
obtain the following proposition:

Proposition 1.8.3. We have

∑
K/Q pure cubic

1
f(K/Q)s

= −1
2

+
1
6

(
1 +

2
3s

+
6

32s

)∏
p 6=3

(
1 +

2
ps

)

+
1
3

∏
p≡±1 (mod 9)

(
1 +

2
ps

) ∏
p 6≡±1 (mod 9)

(
1− 1

ps

)
,

where p 6≡ ±1 (mod 9) includes p = 3.

Corollary 1.8.4. If, as above, M(Q(
√
−3)/Q, X) denotes the number of pure

cubic �elds K up to isomorphism with f(K/Q) ≤ X, for all ε > 0 we have

M(Q(
√
−3)/Q, X) = C(Q(

√
−3)/Q)X(log(X)+D(Q(

√
−3)/Q)−1)+O(X2/3+ε) ,

where

C(Q(
√
−3)/Q) =

7
30

∏
p

(
1− 3

p2
+

2
p3

)
= 0.066907733301378371291841632984295637501344 . . .

D(Q(
√
−3)/Q) = 2γ − 16

35
log(3) + 6

∑
p

log(p)
p2 + p− 2

= 3.45022279783059196279071191967111041826885 . . . ,

where γ is Euler's constant and the sum is over all primes including p = 3.
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To check the validity of these constants, we note that for instance for X = 1016

we have

M(Q(
√
−3)/Q, X) = 26289108423790515 , while

C(Q(
√
−3)/Q)X(log(X) +D(Q(

√
−3)/Q)− 1) = 26289108423786084 . . .

As already mentioned, the error is of the order of O(X1/4) (in this precise case
0.4431X1/4), much smaller than O(X2/3+ε) proved above.

1.8.3 Case (5): K2 = Q(
√

D) with D 6= −3

In case (5), we have K2 = Q(
√
D) with D 6= −3, so L = Q(

√
D,
√
−3). Recall

from the introduction that we denote by F(K2) the set of cubic extensions K/Q
up to isomorphism such that the quadratic subextension of the Galois closure
of K/Q is isomorphic to K2. The goal of this subsection is the proof of the
following result.

Proposition 1.8.5. Let D be a fundamental discriminant with D 6= −3, let
K2 = Q(

√
D), and let r2(D) = 1 for D < 0 and r2(D) = 0 for D > 0. There

exists a function φD(s) holomorphic for Re(s) > 1/2 such that

∑
K∈F(K2)

1
f(K/Q)s

= φD(s) +
3r2(D)

6
L3(s)

∏(−3D
p

)
=1

(
1 +

2
ps

)
,

where

L3(s) =


1 + 2/32s if 3 - D,

1 + 2/3s if D ≡ 3 (mod 9),
1 + 2/3s + 6/32s if D ≡ 6 (mod 9).

Proof. If we denote by φD(s) the contribution of the nontrivial characters in
Theorem 1.6.1 it is clear that φD(s) is a holomorphic function for Re(s) > 1/2,
so it is su�cient to consider the contribution of the trivial characters. We
consider the three cases separately.

(1). Assume �rst that 3 - D.
By Lemma 1.5.5 we have |(U(L)/U(L)3)[T ]| = 3r2(D) where r2(D) = 1 if D < 0
and r2(D) = 0 if D > 0, we have [K2 : Q] = 2, and since 3 is unrami�ed in
K2/Q the possible ideals bz are bz = pj3 for j = 0, 2, or 3, where as usual
p3 =

√
−3ZL, which is not necessarily a prime ideal since 3 may split in K2/Q,

with corresponding ideals cz = ZL, p3, p3. Thus by Lemma 1.5.7 we have with
our usual notation

|(Zb/Z
3
b)[T ]| = (1, 32, 34)(1, 1, 3)

(1, 1, 32)(1, 3, 32)
,

so |(Zb/Z
3
b)[T ]| = 1, 3, 3. We have dNe(b)s = 1, 3s, 32s, and Pb(s) = 1, −1/3s,

1. By De�nition 1.2.9 we have D3 = ∅ and D is the set of all primes p such
that

(−3D
p

)
= 1. Thus re(b) is always trivial and in particular the condition

re(b) | d3 is always satis�ed. If χ = χ0 is the trivial character, we thus have
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F (pj3, χ0, s) = F (s) =
∏

(−3D/p)=1(1 + 2/ps). It follows that the contribution of
the trivial characters is equal to

Φ0(s) =
3r2(D)/2

32s

(1, 3s, 32s)(1,−1/3s, 1)
(1, 3, 3)

F (s)

=
3r2(D)

6

(
1 +

2
32s

) ∏(−3D
p

)
=1

(
1 +

2
ps

)
,

proving the formula in the case 3 - D.

(2). Assume now that D ≡ 3 (mod 9).
Once again by Lemma 1.5.5 we have |(U(L)/U(L)3)[T ]| = 3r2(D). On the other
hand, 3 is rami�ed in K2/Q, so denote by p3 the prime ideal of K2 above 3
(so that p3ZL =

√
−3ZL). The possible ideals b are b = pj3 with 0 ≤ j ≤ 3

(including j = 1), with corresponding ideals c = ZK2 , p3, p3, p3. Thus by
Lemma 1.5.7 we have with our usual notation

|(Zb/Z
3
b)[T ]| = (1, 1, 32, 34)(1, 1, 1, 3)

(1, 1, 3, 32)(1, 1, 3, 32)
,

so |(Zb/Z
3
b)[T ]| = 1, 1, 1, 3. We have dNe(b)s = 1, 3s/2, 3s, 33s/2, and Pb(s) = 1,

1/3s/2, 1/3s/2 − 1/3s, 1 − 1/3s. By De�nition 1.2.9, since 3 is inert in K ′2 =
Q(
√
−D/3) (because −D/3 ≡ 2 (mod 3)), we have D3 = ∅ (so that d3 = ZK2),

and D is the set of all primes p such that
(−3D

p

)
= 1. We have re(b) = p3, ZK2 ,

ZK2 , ZK2 respectively, so the condition re(b) | d3 implies that b = ZK2 must be
excluded from the sum. Since F (pj3, χ0, s) = F (s) =

∏
(−3D/p)=1(1 + 2/ps), it

follows that the contribution of the trivial characters is equal to

Φ0(s) =
3r2(D)/2

33s/2

(1, 3s/2, 3s, 33s/2)(0, 1/3s/2, 1/3s/2 − 1/3s, 1− 1/3s)
(1, 1, 1, 3)

F (s)

=
3r2(D)

6

(
1 +

2
3s

) ∏(−3D
p

)
=1

(
1 +

2
ps

)
,

proving the formula of the proposition in the case D ≡ 3 (mod 9).
(3). Assume �nally that D ≡ 6 (mod 9) with D 6= −3.

This case is very similar to the preceding one. The initial computations are the
same, but now 3 is split in K ′2, so D3 = {3}, hence d3 = 3Zk. We have the
same values of b and re(b), but since d3 = 3Zk the condition re(b) | d3 is always
satis�ed, even for b = ZK2 . Thus for 1 ≤ j ≤ 3 we have as above F (pj3, χ0, s) =
F (s) =

∏
(−3D/p)=1(1 + 2/ps), while for j = 0 we have F (ZK2 , χ0, s) = 2F (s).

It follows that the contribution of the trivial characters is equal to

Φ0(s) =
3r2(D)/2

33s/2

(1/3s/2, 3s/2, 3s, 33s/2)(2, 1/3s/2, 1/3s/2 − 1/3s, 1− 1/3s)
(1, 1, 1, 3)

F (s)

=
3r2(D)

6

(
1 +

2
3s

+
6

32s

) ∏(−3D
p

)
=1

(
1 +

2
ps

)
,

giving the third formula of the proposition.
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Corollary 1.8.6. Set D′ = −3D if 3 - D and D′ = −D/3 if 3 | D, and
denote as usual by χD′ the character

(
D′

.

)
. Then if D 6= −3 is a fundamental

discriminant, for all ε > 0 we have

M(Q(
√
D)/Q, X) = C(Q(

√
D)/Q)X +O(X2/3+ε) with

C(Q(
√
D)/Q) =

3r2(D)`3L(χD′ , 1)
π2

∏
p|D′

(
1− 1

p+ 1

) ∏(
D′

p

)
=1

(
1− 2

p(p+ 1)

)
,

where

`3 =


11/9 if 3 - D,

5/3 if D ≡ 3 (mod 9),
7/5 if D ≡ 6 (mod 9).

Note that L(χD′ , 1) is given by Dirichlet's class number formula, in other words
with standard notation, L(χD′ , 1) = 2πh(D′)/(w(D′)

√
|D′|) if D′ < 0 and

L(χD′ , 1) = 2h(D′)R(D′)/
√
D′ if D′ > 0.

The formula in the above Corollary allows to compute the constant C using
the the folklore method explained in detail in [15, �10.3.6].

1.8.4 Comparison with the Results of [14]

The results of this paper are the cubic analogue of the corresponding results for
quartic extensions studied in [14]. It is interesting to note that the �nal formula
(essentially Corollary 1.8.6 above) is extremely similar to that obtained in [14].

Proposition 1.8.7. Keep the notation of Corollary 1.8.6, and denote by aD′(p)
the number of copies of Qp occurring in K ′2 ⊗ Qp (aD′(p) = 0 or 2 according
to whether the number of prime ideals pi above p in K ′2 equals 1 or 2). For
D 6= −3 we have

M(Q(
√
D)/Q, X) = C(Q(

√
D)/Q)X +O(X2/3+ε) with

C(Q(
√
D)/Q) =

c3(D′)
33+r2(D′)

∏
p 6=3

(
1 +

aD′(p)
p

)(
1− 1

p

)
,

where

c3(D′) =


11 if 3ZK′2 = p2

1 ,

15 if 3ZK′2 = p1 ,

21 if 3ZK′2 = p1p2 .

Proof. By Proposition 1.8.5 we can write

ΦD(s) = φD(s) +
3r2(D)

6
L3(s)

∏
p6=3

(
1 +

aD′(p)
ps

)
,

so that

ΦD(s)
(1− 1/3s)ζ(s)

= ψD(s) +
3r2(D)

6
L3(s)

∏
p6=3

(
1 +

aD′(p)
ps

)(
1− 1

ps

)
,
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where ψD(s) = φD(s)/((1 − 1/3s)ζ(s)). When s tends to 1, ψD(s) tends to
0, the left-hand side tends to a limit, and it is easy to see that the right-
hand side tends to a semi-convergent Euler product. Thus, if we set P (D′) =∏
p 6=3((1 + aD′(p)/p)(1− 1/p)), we have

C(Q(
√
D/Q)) = Ress=1 ΦD(s) =

1
32−r2(D)

L3(1)P (D′) =
c3(D′)

33+r2(D′)
P (D′) ,

where c3(D′) is given in the proposition, since the di�erent cases for L3(1)
correspond to the di�erent splittings of 3 in K ′2/Q.

For comparison, we recall the results of [14]. We let k be a cubic number
�eld, and set g(k) = 3 if k is cyclic, g(k) = 1 otherwise. We let F(k) be the
set of isomorphism classes of quartic number �elds K whose cubic resolvent
is isomorphic to k. If K ∈ F(k) then its discriminant d(K) is of the form
d(K) = d(k)f2 for some integer f , which by abuse of language we call the
conductor of K and denote by f(K/Q). As in our case, we let

M(k/Q, X) = |{K ∈ F(k), f(K/Q) ≤ X}| .

The main result of [14] is then as follows:

Theorem 1.8.8. Denote by ak(p) the number of copies of Qp in k⊗Qp (ak(p) =
0, 1 or 3 according to whether the number of prime ideals pi above p in k equals
1, 2 or 3). We have

M(k/Q, X) = C(k/Q)X +O(X1/2+ε) with

C(k/Q) =
1

g(k)
c2(k)

24+r2(k)

∏
p 6=2

(
1 +

ak(p)
p

)(
1− 1

p

)
,

where

c2(k) =



11 if 2Zk = p1

14 if 2Zk = p3
1

15 if 2Zk = p1p2

16 if 2Zk = p2
1p2 and v2(d(k)) = 3

18 if 2Zk = p2
1p2 and v2(d(k)) = 2

23 if 2Zk = p1p2p3

The similarities are striking.

1.8.5 An Exact Result when D < 0 and 3 - h(D)

It is interesting to note that when D < 0 and 3 - h(D), one can prove that
nontrivial characters do not occur in the above formulas, so that φD(s) = 0,
thus giving exact formulas for the Dirichlet series. This is based on the following
proposition.

Proposition 1.8.9. Assume that K2 = Q(
√
D) with D < 0, D 6= −3, and

3 - h(D) = |Cl(K2)|. Then for any ideal b ∈ B occurring in the sum of Theorem
1.6.1, the group Gb = (Clb(L)/Clb(L)3)[T ] is trivial.
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Proof. An important theorem of Scholz ([47]) says that if D < 0 is a negative
fundamental discriminant di�erent from −3 we have

0 ≤ rk3(Cl(Q(
√
D)))− rk3(Cl(Q(

√
−3D))) ≤ 1

and that rk3(Cl(Q(
√
D))) = rk3(Cl(Q(

√
−3D))) if and only if ε is not 3-

primary, in other words if and only if ε is not a cube modulo 3
√
−3ZL, where

L = Q(
√
D,
√
−3), and where ε is a fundamental unit of Q(

√
−3D). Since in

our case we assume that rk3(Cl(Q(
√
D))) = 0, it follows that we also have

rk3(Cl(Q(
√
−3D))) = 0 and that ε is not a cube modulo 3

√
−3ZL.

We now consider the exact sequence of F3[T ]-modules already used above in
the computation of fα0(b):

1 −→ Sb(L)[T ] −→ S3(L)[T ] −→ Zb

Z3
b

[T ] −→ Clb(L)
Clb(L)3

[T ] −→ Cl(L)
Cl(L)3

[T ] −→ 1 .

By Hasse's formula giving the class number of biquadratic number �elds ([36]),
we have |Cl(L)| = 2−j |Cl(K2)||Cl(K ′2)| with j = 0 or 1, so in particular by
Scholz's theorem we deduce that 3 - |Cl(L)|. We thus have the exact sequence

1 −→ Sb(L)[T ] −→ S3(L)[T ] −→ Zb

Z3
b

[T ] −→ Gb −→ 1 .

In addition, also since 3 - |Cl(L)|, S3(L) is an F3-vector space of dimension
r1(L)+r2(L) = 2, generated by the classes modulo cubes of ρ and a fundamental
unit ε of K ′2 = Q(

√
−3D). The action of τ and τ2 is given by τ(ρ) = ρ−1,

τ2(ρ) = ρ, τ(ε) = ±ε−1, τ2(ε) = ±ε−1 (where ± = NK′2/Q(ε)), and modulo
cubes the ± signs disappear. Since T = {τ + 1, τ2 + 1}, it follows that S3(L)[T ]
is a 1-dimensional F3-vector space generated by the class of ε.

Since Gb maps surjectively onto Gb′ for b′ | b, it is su�cient to consider
b = 3

√
−3. In that case, we have seen that |(Zb/Z

3
b)[T ]| = 3 in all cases, and

since we have just shown that |S3(L)[T ]| = 3, by the above exact sequence it
follows that Gb is trivial if and only if Sb(L)[T ] is trivial, hence by de�nition if
and only if ε is not congruent to a cube modulo bz = 3

√
−3ZL, which is exactly

the second statement of Scholz's theorem, proving the proposition.

Remark. The same proof shows the following result for D > 0: if D > 0 and
3 - h(D′), where as usual D′ = −3D if 3 - D and D′ = −D/3 if 3 | D, then Gb

is canonically isomorphic to (Zb/Z
3
b)[T ], hence has order 1 unless b = 3

√
−3 or

3 - D and b = 3ZL, in which case it has order 3.

Corollary 1.8.10. Under the same assumptions, we have∑
K∈F(K2)

1
f(K/Q)s

= −1
2

+
1
2
L3(s)

∏(−3D
p

)
=1

(
1 +

2
ps

)
,

where

L3(s) =


1 + 2/32s if 3 - D,

1 + 2/3s if D ≡ 3 (mod 9),
1 + 2/3s + 6/32s if D ≡ 6 (mod 9).
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Proof. Clear from the proposition.

Examples.

∑
K∈F(Q(

√
−1))

1
f(K/Q)s

= −1
2

+
1
2

(
1 +

2
32s

) ∏(
12
p

)
=1

(
1 +

2
ps

)
,

∑
K∈F(Q(

√
−2))

1
f(K/Q)s

= −1
2

+
1
2

(
1 +

2
32s

) ∏(
24
p

)
=1

(
1 +

2
ps

)
,

∑
K∈F(Q(

√
−6))

1
f(K/Q)s

= −1
2

+
1
2

(
1 +

2
3s

) ∏(
8
p

)
=1

(
1 +

2
ps

)
,

∑
K∈F(Q(

√
−21))

1
f(K/Q)s

= −1
2

+
1
2

(
1 +

2
3s

+
6

32s

) ∏(
28
p

)
=1

p 6=3

(
1 +

2
ps

)
.

1.9 Special Cases: k Imaginary Quadratic

1.9.1 Case (1): k = Q(
√
−3), Cyclic Cubic Extensions

Here k = K2 = L = Q(
√
−3). By Lemma 1.5.5 we have |(U(L)/U(L)3)[T ]| = 3,

[k : Q] = 2, and if p3 =
√
−3Zk is the unique ideal above 3, the possible ideals

bz are pj3 for j = 0, 1, 2 and 3, with corresponding ideals cz equal to Zk, p3, p3

and p3. Thus, |cz/bz| = 1, 1, 3, 9, so by Lemma 1.5.7 we have |(Zb/Z
3
b)[T ]| = 1,

1, 3, 9. Since e(p3/3) = 2, re(b) is equal to p3, Zk, Zk and Zk, and we have
respectively dNe(b)s = 1, 3s, 32s, 33s, N(re(b))s = 3s, 1, 1, 1, and Pb(s) = 1,
1/3s, 1/3s − 1/32s, 1− 1/32s. By De�nition 1.2.9 we have D3 = {p3}, and D is
the set of all primes p of k, p - 3Zk.

If χ = χ0 is the trivial character, we thus have F (pj3, χ0, s) = F (s) =∏
p-3Zk(1 + 2/N(p)s) for j ≥ 1, while F (ZK2 , χ0, s) = 2F (s). Thus the con-

tribution of the trivial character is equal to

Φ0(s) =
3/2
33s

(1, 3s, 32s, 33s)(2, 1/3s, 1/3s − 1/32s, 1− 1/32s)
(3s, 1, 1, 1)(1, 1, 3, 9)

F (s)

=
1
6

(
1 +

2
32s

+
6

33s
+

18
34s

) ∏
p-3Zk

(
1 +

2
N(p)s

)

=
1
6

(
1 +

2
32s

+
6

33s
+

18
34s

) ∏
p∈Z

p≡1 (mod 3)

(
1 +

2
ps

)2 ∏
p∈Z

p≡2 (mod 3)

(
1 +

2
p2s

)
.

An easy computation shows that the group Gb is trivial for b = pj3 with 0 ≤
j ≤ 2, but has order 3 for b = p3

3, Thus, we must simply add the contribution
of the two conjugate nontrivial characters of order 3 of Gp3

3
. By de�nition, if χ

is one of these characters we have

F (p3
3, χ, s) =

∏
p≡x3 (mod p3

3)

(1 + 2/N(p)s)
∏

p6≡x3 (mod p3
3)

(1− 1/N(p)s) ,
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but the condition p ≡ x3 (mod p3
3) is equivalent to p ≡ ±1 (mod 9) for p ∈ Q

below p. So we obtain

F (p3
3, χ, s) =

∏
p≡1 (mod 9)

(1 + 2/ps)2
∏

p≡−1 (mod 9)

(1 + 2/p2s)
∏

p≡4,7 (mod 9)

(1− 1/ps)2

∏
p≡2,5 (mod 9)

(1− 1/p2s) ,

Proposition 1.9.1. We have∑
K/k cyclic cubic

1
N(f(K/k))s

= −1
2

+
1
6

(
1 +

2
32s

+
6

33s
+

18
34s

)∏
p-3

(
1 +

2
N(p)s

)

+
1
3

(
1− 1

32s

) ∏
p≡1 (mod 9)

(1 + 2/ps)2
∏

p≡−1 (mod 9)

(1 + 2/p2s)

∏
p≡4,7 (mod 9)

(1− 1/ps)2
∏

p≡2,5 (mod 9)

(1− 1/p2s) .

Corollary 1.9.2. If, as above, M(k/k,X) denotes the number of cyclic cubic
�elds K up to isomorphism with N(f(K/k)) ≤ X, for all ε > 0 we have

M(k/k,X) = C(k/k)X(log(X) +D(k/k)− 1) +O(Xα+ε) ,

where

C(Q(k/k)) =
1
6

∏
p⊂k

(
1− 3
N(p)2

+
2

N(p)3

)
(Ress=1 ζk(s))2

= 0.051904999544559289144500298804817252 . . .

D(Q(
√
−3)/Q) = 2γk − log(3) + 12

∑
p6=3

log(p)
(p2r3(p) + pr3(p) − 2)

= 1.447607037536093537714535880874836066 . . . ,

where r3(p) is the class modulo 3 of p, i.e. 1 or 2, γk = lims→1

(
ζk(s)

Ress=1 ζk(s)
− 1
s− 1

)
and the sum is over all primes including p = 3.

1.9.2 Case (3): k = Q(
√
−3), [K2 : k] = 2

Here k = Q(
√
−3), K2 = L = Q(

√
−3,
√
D). By Lemma 1.5.5 we have

|(U(L)/U(L)3)[T ]| = 3, [k : Q] = 2, let p3 =
√
−3Zk be the unique ideal

above 3, which is rami�ed, and P3 an ideal of L above p3. Then p3 can be
inert or decomposed in L/k. The possible ideals bz are (p3ZL)j for j = 0, 1, 2
and 3, with corresponding ideals cz equal to ZL, p3ZL, p3ZL and p3ZL. Thus,
|cz/bz| = 1, 1, 32, 34, and |cz ∩ k/bz ∩ k| = 1, 1, 3, 32 so by Lemma 1.5.7 we
have |(Zb/Z

3
b)[T ]| = 1, 1, 3, 9. Since e(p3/3) = 2, re(b) is equal to P3, ZL, ZL

and ZL, and we have respectively dNe(b)s = 1, 3s, 32s, 33s, N(re(b))s = 3s, 1,
1, 1, and Pb(s) = 1, 1/3s, 1/3s − 1/32s, 1− 1/3s. But P3 | d3 if and only if p3

is decomposed in L/k
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So if p3 is decomposed in L/k we obtain that the contribution of the trivial
character is

Φ0(s) =
3

2 · 33s

(1, 3s, 32s, 33s)(2, 1/3s, 1/3s − 1/32s, 1− 1/32s)
(3s, 1, 1, 1)(1, 1, 3, 9)

F (s)

=
1
6

(
1 +

2
32s

+
6

33s
+

18
34s

) ∏
p∈D3

(
1 +

2
N(p)s

)
.

while if p3 is inert in L/k we obtain

Φ0(s) =
3

2 · 33s

(3s, 32s, 33s)(1/3s, 1/3s − 1/32s, 1− 1/32s)
(1, 1, 1)(1, 3, 9)

F (s)

=
1
6

(
1 +

2
32s

+
6

33s

) ∏
p∈D3

(
1 +

2
N(p)s

)
.

Proposition 1.9.3. Let k = Q(
√
−3), let D be a fundamental discriminant

with D 6= −3, let K2 = L = Q(
√
−3,
√
D). There exists a function φD(s)

holomorphic for Re(s) > 1/2 such that

∑
K∈F(K2)

1
N(f(K/k))s

= φD(s) +
1
6
L3(s)

∏
p∈D3

(
1 +

2
N(p)s

)
,

where

L3(s) =


1 + 2/32s + 6/33s + 18/34s if

(
D

3

)
= 1

1 + 2/32s + 6/33s if
(
D

3

)
= −1.

Corollary 1.9.4. If, as above, M(K2/k,X) denotes the number of cyclic cubic
�elds K up to isomorphism with N(f(K/k)) ≤ X, for all ε > 0 we have

M(K2/k,X) = C(K2/k)X +O(Xα+ε) with

C(K2/k) = `3
1

ζk(2)

∏
p|D

(
1− 1
N(p) + 1

) ∏
p∈D

(
1− 2
N(p)(N(p) + 1)

)
,

where

`3 =


5/18 if

(
D

3

)
= 1

13/54 if
(
D

3

)
= −1

1.9.3 Case (4): k Imaginary Quadratic

As additional examples, we now assume that k is an imaginary quadratic �eld
of discriminant D < 0, and we will in addition assume that 3 is inert in k, in
other words that

(
D
3

)
= −1. It is of course not di�cult to treat the other cases.

Note that this assumption implies that ρ /∈ k. In these examples, we will only
compute C(K2/k).
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Once again we have 3ZL = p2
3 with p3 =

√
−3ZL, and the only possible ideals

b are pj3 with 0 ≤ j ≤ 3. With standard notation we have Ress=1 ζk(s) =
2πh(D)/(w(D)

√
|D|), so

C(K2/k) =
π2h(D)2

66(w(D)/2)2|D|
∏
p⊂k

(
1− 3
N(p)2

+
2

N(p)3

)
(S0 + S1 + S2 + S3) ,

where Sj is the contribution of b = pj3. We have S0 = 2/3, S1 = 1, S2 =
9(1/3 − 1/9) = 2, S3 = 27(1 − 1/9)/9 = 8/3, so S0 + S1 + S2 + S3 = 19/3, so
we obtain

C(K2/k) =
19π2h(D)2

198(w(D)/2)2|D|
∏
p⊂k

(
1− 3
N(p)2

+
2

N(p)3

)

=
19π2h(D)2

198(w(D)/2)2|D|
∏
p|D

(
1− 3

p2
+

2
p3

)
∏(
D
p

)
=−1

(
1− 3

p4
+

2
p6

) ∏(
D
p

)
=1

(
1− 3

p2
+

2
p3

)2

.
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Chapter 2

An algorithm to compute

relative cubic �elds

2.1 General case

2.1.1 Introduction

Let L/K be an extension of number �elds. We de�ne FK,n(X) to be the set of
isomorphism classes of extensions L/K such that

[L : K] = n, and NK/Qd(L/K) ≤ X,

where d(L/K) is the relative discriminant ideal of the extension L/K.
Our objective is to generalize Belabas's [2] algorithm for listing all represen-

tatives of FK,n(X). In particular we consider the case when K is an imaginary
quadratic number �eld and n = 3, and we will solve it completely when K has
class number 1.

Theorem 2.1.1. Let K be an imaginary quadratic number �eld with class
number hK = 1. There exists an algorithm which lists all cubic extensions
in FK,3(X) in time Oε(X1+ε), for all ε > 0.

[27, Theorem I.1] tells us that the number of such classes is of the order of
X. So

Corollary 2.1.2. The algorithm runs in time almost linear in the size of the
output.

We made an implementation in PARI/GP for the case K = Q(i) which can
be easily adapted for any imaginary quadratic number �eld with class number
1.

2.1.2 Taniguchi's theorem

To generalize Belabas's algorithm we need a theorem by Taniguchi [50], adapting
Davenport-Heilbronn [26] theory to cubic algebras.

De�nition 2.1.3. Let O be a Dedekind domain, and K be its quotient �eld.
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• Let C(O) be the set of �cubic algebras� that is, isomorphisms classes of
O-algebras that are projective of rank 3 as O-modules.

• For every fractional ideal a of O we de�ne

C(O, a) = {R ∈ C(O) | St(R) = a},

where St(R) ∈ Cl(O) is the Steinitz class of R, thus R will be of the form
ω1O ⊕ ω2O ⊕ ω3a, for appropriate ω1, ω2, ω3 ∈ Frac(R) := R ⊗O K. Let
further

Ga =

{(
α ∈ O β ∈ a−1

γ ∈ a δ ∈ O

) ∣∣∣∣∣ αδ − βγ ∈ O×
}
,

Va = {F = (a, b, c, d) | a ∈ a, b ∈ O, c ∈ a−1, d ∈ a−2}.

• If F ∈ Va, its discriminant disc(F ) = b2c2−27a2d2 +18abcd−4ac3−4b3d
belongs to a−2.

• We consider elements of Va as binary cubic forms so (a, b, c, d) = ax3 +
bx2y + cxy2 + dy3 and we de�ne the action of Ga on Va by

M · F = (detM)−1F (αx+ γy, βx+ δy),

where M =
(
α β
γ δ

)
∈ Ga.

Theorem 2.1.4 (Taniguchi). There exists a canonical bijection between C(O, a)
and Va/Ga such that the following diagram is commutative:

Va/Ga −−−−→ C(O, a)

disc

y yd

a−2/(O×)2 ×a2

−−−−→ { integral ideals of O}

,

where d is the relative discriminant ideal map.

Remark. Note that d is well-de�ned since an O-algebras isomorphism preserves
the discriminant.

See Appendix A for a proof of this result.

Remark. In particular, when O is the maximal order of a number �eld K
with class number hK = 1, then Taniguchi's bijection simpli�es to a bijection
between binary cubic forms with coe�cients in O modulo GL2(O) and cubic
O-algebras.

To enumerate relative cubic extensions L/K, we shall select only the cubic
O-algebras R which are both integral domains (so that their ring of fractions
is a �eld), and maximal orders : those maximal algebras are exactly the classes
of the OL. R is a domain if and only if F is irreducible. Maximality is a local
property, therefore we need to test p-maximality at all prime ideals p ⊂ OK such
that p2 | d(R) and this can done with a generalization of Dedekind's criterion :
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Proposition 2.1.5 (relative Dedekind's criterion). [12, Theorem 2.4.8] Let
L/K be an extension of number �elds, L = K(θ), θ an algebraic integer with
minimal polynomial T (x) ∈ OK [x]. Let p be a prime ideal of OK , let β be a
uniformizer of p−1, i. e. β ∈ p−1 \ OK . Let T (x) =

∏
1≤i≤k Ti(x)

ei
be the

factorization of T (x) ∈ (OK/p)[x], with Ti(x) monic belonging to OK [x]. Let

g(x) =
∏

1≤i≤k

Ti(x), h(x) =
∏

1≤i≤k

Ti(x)ei−1,

then g(x)h(x) − T (x) ∈ p[x]. Let f(x) = β(g(x)h(x) − T (x)) ∈ OK [x]. Then
O = OK [θ] is p-maximal if and only if gcd(f, g, h) = 1 in (OK/p)[x].

2.1.3 Reduction of binary cubic forms

Let K be an imaginary quadratic �eld. Let O be its ring of integers.
We want a reduction theory for binary cubic forms of (Sym3O2)∗, i.e.

F (x, y) = ax3 + bx2y + cxy2 + dy3, a, b, c, d ∈ O

modulo the action of SL2(O), given by:

M · F = F (Ax+By,Cx+Dy), for each M =
(
A B
C D

)
∈ SL2(O).

Remark. This is not, in general, the reduction asked by Taniguchi's Theorem,
but we will see later, that it is su�cient for the case hK = 1.

The covariant HF

De�nition 2.1.6. Let F be an irreducible binary cubic form (in particular its
�rst coe�cient a 6= 0). We associate to F the positive de�nite binary Hermitian
form

HF = t21|x− α1y|2 + t22|x− α2y|2 + t23|x− α3y|2,
where

F (x, 1) = a(x− α1)(x− α2)(x− α3), and

t2i = |a|2|αj − αk|2, i, j, k pairwise distinct.

Lemma 2.1.7. We have

(t1t2t3)2 = |a|2|disc(F )| (2.1)

Proof. Straightforward from de�nition 2.1.6 and the de�nition of discrimi-
nant of a polynomial.

The following two lemmas also follow from a direct computation:

Lemma 2.1.8. We have

HF (x, y) = P |x|2 +Qxy +Qxy +R|y|2,

where  P = t21 + t22 + t23 ∈ R+

Q = −(α1t
2
1 + α2t

2
2 + α3t

2
3) ∈ C

R = |α1|2t21 + |α2|2t22 + |α3|2t23 ∈ R+.
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Lemma 2.1.9. Let ∆ = −disc(HF ) = PR− |Q|2 and D = disc(F ). Then

∆ = 3|D|. (2.2)

De�nition 2.1.10. We de�ne [HF ] to be the matrix :

[HF ] =
(
P Q
Q R

)
.

The group GL2(C) acts on the space of binary Hermitian forms over C via:

M · [HF ] = M∗ × [HF ]×M,

where M∗ = (M)t.

In particular, if M ∈ GL2(O), then the discriminant of HF is preserved by this
action.

Proposition 2.1.11. The application which sends F to HF is covariant, i. e.

HM ·F = M ·HF .

Proof.

Just verify on generators of SL2(C):
(

0 1
−1 0

)
and

(
1 α
0 1

)
, α ∈ C.

Thanks to this property we can translate our problem of de�ning a unique
reduced F to the problem of �nding a unique reduced covariant HF plus some
extra conditions as we will see in Section 2.2.3.

De�nition 2.1.12. Let F = (a, b, c, d) ∈ (Sym3O2)∗ be a binary cubic form
with coe�cients in O. We say that F is reduced if its covariant HF is reduced.

In the rest of this section we will then de�ne reduction for positive de�nite
binary hermitian forms, and we will se that this notion is completely explicit in
the case of imaginary quadratic number �elds with class number 1.

Hyperbolic 3-space

Let

H3 = {z + tj | z ∈ C, t ∈ R+}
= {h = z + tj | h ∈ H, such that the k − component is 0, t > 0},

where H is the quaternions ring.
We de�ne the action of SL2(C) on H3 by M · (z + tj) = (z′ + t′j), with

z′ =
ρ2AC + zAD + zBC +BD

ρ2|C|2 + zCD + zCD + |D|2

t′ =
t

ρ2|C|2 + zCD + zCD + |D|2
,
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where M =
(
A B
C D

)
∈ SL2(C) and ρ2 = |z|2 + t2. With the quaternion

notations (and operations), this translates to the neater formula

M · (h) = (Ah+B)(Ch+D)−1.

Let

P = { positive de�nite binary quadratic Hermitian forms in C}

=

{
P |x|2 +Qxy +Qxy +R|y|2

∣∣∣∣∣ P,R ∈ R+, Q ∈ C
|Q|2 − PR < 0

}
,

and let P̃ = P/R+ where R+ acts on P by multiplication.
Let, �nally, Φ : P → H3 de�ned by:

Φ

((
P Q
Q R

))
= −Q

P
+
√

∆
P

j. (2.3)

We have

Φ(M ·H) = M · (Φ(H)), for each H ∈P,M ∈ SL2(C).

More precisely, Φ induces a bijection Φ̃ : P̃ → H3, wich commutes with the
action of SL2(C).

So, in particular, there is a bijection between orbits of H3/ SL2(O) and
P̃/ SL2(O). As fundamental domains F for H3 modulo SL2(O) are known, we
can say:

HF is reduced modulo SL2(O)⇔ Φ(HF ) ∈ F .

From [31] we have an explicit description of fundamental domains of H3 modulo
PSL(2,O):

De�nition 2.1.13. Let K = Q(
√
DK) with DK < 0 a squarefree integer and

dK the discriminant of K. We de�ne

FQ(i) =
{
z + tj ∈ H3 : 0 ≤ |Re(z)| ≤ 1

2
, 0 ≤ Im(z) ≤ 1

2
, |z|2 + t2 ≥ 1

}
,

FQ(
√
−3) =

{
z + tj ∈ H3 : z ∈ FQ(

√
−3), |z|2 + t2 ≥ 1

}
,

where

FQ(
√
−3) =

{
z ∈ C : 0 ≤ Re(z),

√
3

3
Re(z) ≤ Im(z), Im(z) ≤

√
3

3
(1− Re(z))

}

∪

{
z ∈ C : 0 ≤ Re(z) ≤ 1

2
,−
√

3
3

Re(z) ≤ Im(z) ≤
√

3
3

Re(z)

}
.

And for D 6= −3,−1,

FK = {z + tj ∈ BK : z ∈ FK},where

BK =
{
z + tj ∈ H3 :

|cz + d|2 + |c|2t2 ≥ 1 for all c, d ∈ O
with 〈c, d〉 = O

}
,

FK =
{
z ∈ C : 0 ≤ Re(z) ≤ 1, 0 ≤ Im(z) ≤

√
|dK |/2

}
.
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Lemma 2.1.14. For all number �elds K we have

[PGL(2,OK) : PSL(2,OK)] = 2dimF2(O×K/(O×K)2) = 2.

Proof. The exact sequence

1→ SL2(O)→ GL2(O)→ O× → 1

induced by the determinant, gives rise to the exact sequence

1→
〈
O× · Id,SL2(O)

〉
→ GL2(O)→ O×/(O×)2 → 1.

and, since for imaginary quadratic number �eldK, we have dimF2

(
O×K/(O

×
K)2

)
=

1, we can conclude.

Remark. So when we consider fundamental domains of H3 modulo GL2(O),
we can take half of the fundamental domains above.

2.1.4 Bounds for the t-component of a reduced point in
H3

Fundamental domains as given in the previous paragraph, give obvious bounds
for the z-component of (z, t) ∈ H3.

Now we want to bound the t-component from below.
For that we need the following Proposition ([49],[31]):

Proposition 2.1.15. There is a constant κ ∈]0,∞[ only depending on K, such
that for any z ∈ C \K there are in�nitely many λ, µ ∈ O with∣∣∣∣z − λ

µ

∣∣∣∣ ≤ κ

|µ|2
and 〈µ, λ〉 = O

So for �big� |µ| we have κ
|µ| < 1 and so |zµ− λ| ≤ κ

|µ| < 1.
But we know that if z + tj ∈ FK we have |zµ − λ|2 + t2|µ|2 ≥ 1 and so we

obtain t ≥ tK , for some tK depending only on K.
It remains to treat points z + tj ∈ FK , z ∈ K.
Let us de�ne

SK = {z ∈ K | |zµ+ λ| ≥ 1 for all 〈λ, µ〉 = O}.

This set of singular points is �nite modulo addition of an element of O (see
[49, 31]). The z + tj ∈ FK for z ∈ SK are the only points in FK where there is
no lower bound for t.

Fortunately, if hK = 1, then SK = ∅ : in fact if z = α
β with α, β coprime

elements of O we just need to take µ = β and λ = α to get |µz − λ| = 0 with
〈λ, µ〉 = O.

So when hK = 1 we have always t ≥ tK > 0 for some tK depending only on
K.

Proposition 2.1.16. Let K be an imaginary quadratic number �eld with class
number hk = 1. Then there exists a constant tK , only depending on K, such
that t ≥ tK for every (z, t) ∈ FK .

So from now on we will restrict to K imaginary quadratic number �eld with
class number hK = 1.
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2.2 Computing tK for all K imaginary quadratic
with hK = 1

As we saw in section 2.1.4, when hK = 1 it is possible to bound |t|2 ≥ t2K .
Let us give explicitly those t2K for all the imaginary quadratic number �elds

with class number one.

Theorem 2.2.1. Let K = Q(
√
−D), for D ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}.

Then the value of t2K is given in the following tables :
D 1 2 3 7 11
t2K 1/2 1/4 2/3 3/7 2/11

D 19 43 67 163
t2K 2/19 2/43 2/67 2/163

Proof. The �rst table describes the Euclidean �elds. In this case the com-
putation of tK is very easy and we sketch it here (but it can also be found in
more detail in [22]).

In fact, we only need to �nd the intersection of the three unit spheres centered
in 0, 1 and ω where

ω =
{ √

−D when −D ≡ 2, 3 (mod 4)
1+
√
−D

2 when −D ≡ 1 (mod 4)

So we �nd that the intersection point x = z + it has

z =

{
1+
√
−D

2 when −D ≡ 2, 3 (mod 4)
1
2 + (1−D)

4
√
−D when −D ≡ 1 (mod 4)

and we obtain tK from t2K = 1− |z|2.
The second table concerns the non-Euclidean �elds. For these we just refer

to [53].

2.2.1 Bounds for a reduced binary Hermitian form

Once we know t ≥ tK we can bound P,Q and R:

Lemma 2.2.2. Let (P,Q,R) = P |x|2 +Qxy +Qxy +R |y|2 be a reduced Her-
mitian form in P, with discriminant ∆ = |Q|2 − PR. We have

P ≤
√

∆
tK

. (2.4)

|Q|2 ≤ cKP 2, (2.5)

for a constant cK depending only on the number �eld K, and

PR ≤
(

1 +
cK
t2K

)
∆ (2.6)
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Proof. For (2.4) just recall that t =
√

∆/P by the de�nition of Φ in (2.3)
and t ≥ tK .

Thanks to the bounds on Re (z) and Im (z) given in the description of the
fundamental domain F (in De�nition 2.1.13) we get

• 0 ≤ |Re(Q)| ≤ P/2, 0 ≤ Im(−Q) ≤ 1/2, and so |Q|2 ≤ P 2/2 when
K = Q(i);

• 0 ≤ Re(−Q) ≤ P/2, −
√

3/6P ≤ Im(−Q) ≤
√

3/3P and then |Q|2 ≤
7/12P 2, when K = Q(

√
−3)

• 0 ≤ Re(−Q) ≤ P/2, 0 ≤ Im(−Q)| ≤
√
|dK |
2 P and then |Q|2 ≤

(
1+|dK |

4

)
P 2

So in all the cases we have

|Q|2 ≤ cKP 2 ≤ cK
∆
t2K
,

for cK =
(

1+|dK |
4

)
Finally, we have

PR− |Q|2 = ∆,

so we obtain

PR ≤
(

1 +
cK
t2K

)
∆

2.2.2 Bounds for reduced binary cubic forms

In this section, we are going to give bounds for the coe�cients of reduced binary
cubic forms, which allow us to loop on all reduced binary cubic forms in time
Õ(X). Let K be an imaginary quadratic �elds of class number 1 and O = OK .

Theorem 2.2.3. Let F = (a, b, c, d) be an irreducible binary cubic form with
coe�cients in O which is reduced modulo SL2(O). Let |disc(F )| ≤ D. Then

|a| ≤
(
α√
3

)3/2

D1/4; |b| ≤ 3γ1/2D1/4

|ad| ≤ β3/2D1/2; |bc| ≤ 9(3β)3/2D1/2; |ac| ≤ 3γD1/2.

Where α = 1/tK , β =
(

1 + cK
t2K

)
, γ = αβ

√
27

4 .

Proof. Let H = (P,Q,R) ∈ P be a reduced (positive de�nite) binary
hermitian form. Then 

P ≤ R
|Re(Q)| ≤ P/2
| Im(Q)| ≤

√
|dK |P/2.
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(remark that reduction conditions may be stricter than these ones, so (P,Q,R)
satisfying this bounds is not always a reduced Hermitian form). Using the
results of Lemma 2.2.2 we obtain:

P ≤ α
√

∆ and PR ≤ β∆. (2.7)

where α = 1/tK and β =
(

1 + cK
t2K

)
. Moreover

t2i |αi|2 ≤ R, and tjtk ≤
1
2

(t2j + t2k) ≤ P

2
. (2.8)

It follows that

|αi|2 ≤
(
P

2

)2

R
1

t21t
2
2t

2
3

, for all i ∈ {1, 2, 3}. (2.9)

From (2.7) and (2.8) we obtain

|αi|2 ≤
αβ
√

27
4

√
D

|a|2

So we have

|αi| ≤ γ1/2D
1/4

|a|
, (2.10)

where γ = αβ
√

27
4 . Thanks to the last formula, we can bound |b|:

|b| = |a(−α1 − α2 − α3)| ≤ 3γ1/2D1/4. (2.11)

In the same way

|c| = |a| |α1α2 + α1α3 + α2α3| ≤ 3γ
√
D

|a|

so
|ac| ≤ 3γ

√
D (2.12)

We can also bound |a|. In fact, using the AGM inequality we have

3(a2D)1/3 = 3(t21t
2
2t

2
3)1/3 ≤ t21 + t22 + t23 = P. (2.13)

We know that P ≤
√

3α
√
D and t21t

2
2t

2
3 = |a|2D so we obtain

|a| ≤
(
α√
3

)3/2

D1/4.

Now we need to bound |ad| and |bc|. From (2.13) we obtain

|a|2 ≤ P 3

33D
.

Then

|a|2R3 ≤ P 3R3

33D
≤ β3∆3

33D
= β3D2.
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Moreover,

|d2D| =
∣∣∣∣da
∣∣∣∣2 |a|2D = |α1|2|α2|2|α3|2t21t22t23 ≤ R3,

so

|a2d2| ≤ |a|
2R3

D
≤ β3D,

and we conclude
|ad| ≤ β3/2|D|1/2. (2.14)

Finally we study |bc|:

|bc| ≤ |a|2
(∑

i

|αi|

)∑
i 6=j

|αiαj |

 .

so we have a sum of 9 terms of the form |a|2αiαjαk with i, j, k not all equal.
Thanks to the formula

|αi|2t2i (t21 + t22 + t23) ≤ PR (2.15)

we get

|αi|2 ≤
PR

t2i t
2
j

for every j ∈ {1, 2, 3}. (2.16)

Choosing properly the j's appearing in the formula above, we have, for i, j, k
not all equal

|a|4|αi|2|αj |2|αk|2 ≤ |a|4
(PR)3

t41t
4
2t

4
3

=
(PR)3

D2
≤ β333|D|,

which implies
|a|2|αi||αj ||αk| ≤ (3β)3/2D1/2 (2.17)

So
|bc| ≤ 9(3β)3/2D1/2. (2.18)

and we can conclude.

Remark. Reduction modulo SL2(O) is weaker than reduction modulo GL2(O),
in particular the bounds we have found for a, b, c, d still hold for forms reduced
modulo GL2(O).

Corollary 2.2.4. It is possible to list all the binary cubic forms (a, b, c, d) mod-
ulo SL2(O), with N (disc(F )) ≤ X (i.e. X = D2, with the notation of Theorem
2.2.3) in time O(X1+ε), for all ε > 0.

Proof. The number of quadruples (a, b, c, d) satisfying all the conditions
given in Theorem 2.2.3 is

N =

 ∑
|a|�D1/4

∑
|d|�D1/2/|a|

1

 ·
 ∑

0<|b|�D1/4

∑
|c|�D1/2/|b|

1


+

∑
|a|�D1/4

 ∑
|d|�D1/2/|a|

∑
|c|�D1/2/|a|

1

 ,
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where the second term corresponds to b = 0. Thus

N �
∑

|a|�D1/4

D

|a|2
∑

|b|�|D|1/4
b6=0

D

|b|2
+

∑
|a|�D1/4

D2

|a|4

For simplicity we will focus on the last sum of this formula, but the �rst one
can be treated in the same way.

∑
|a|�D1/4

D2

|a|4
� D2 ·

D∑
n=1

#{a ∈ O : |a|4 = n}
n

.

Now, since #{a ∈ O : |a|4 = n} = O(nε) = O(Dε), for all ε > 0 and
∑D
n=1

1
n is

O(log(D)). So we can conclude.

2.2.3 Automorphisms and morphisms

As we already said, the problem of reducing F modulo GL2(O) reduces �nearly�
to the problem of reducing HF modulo GL2(O). We are going to explain the
meaning of this �nearly�.

Proposition 2.2.5. Let F1 6= F2 ∈ (Sym3O2)∗, F2 = M · F1 for some M ∈
GL2(O). Suppose that HF1 and HF2 are both reduced Hermitian forms. Then
only two cases are possible:

(1) HF1 = HF2 = H and M ∈ Aut(H) (i.e. M ·H = H);

(2) HF1 6= HF2 but they are both on the boundary of the fundamental domain
F and they are in the same orbit modulo GL2(O).

We need to study these two cases to avoid counting more than once the same
orbit of (Sym3O2)∗.

For the �rst case, we can list the �nitely many automorphisms {Mi} of HF

and choose only one of the Mi · F (for example the smallest F = (a, b, c, d) in
lexicographical order).

For the second case, we have to do the same thing but with the matrices {Nj}
(we will call them �morphisms�), which send HF on the boundary to another
point of the boundary.

Finally, we have to put the two conditions together to get only one repre-
sentative for each orbit.

Proposition 2.2.6. Let F = (a, b, c, d), F reduced modulo GL2(O), N (disc(F )) ≤
X2. Let H = HF , and ∆ = PR− |Q|2.

Let M =
(
A B
C D

)
∈ GL2(O) such that M ·HF = HF . Then we have the

following bounds on the coe�cients of M :

|A|2 ≤ PR

∆
, |B| ≤ P√

∆
, |D|2 ≤ PR

∆
. (2.19)
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Proof. Let us write H(x, y) = P |x|2 +Qxy +Qxy +R|y|2. We have

PH(x, y) = |xP + yQ|2 + ∆|y|2, and (2.20)

RH(x, y) = |Ry +Qx|2 + ∆|x|2. (2.21)

Thanks to the formula (2.20) we can give upper bounds for |A|, |B|, and |D|.
Let we write more explicitly the relation M ·H = H:

M ·H =
(
A B
C D

)(
P Q
Q R

)(
A C
B D

)
(2.22)

=
(
|A|2P +ABQ+ABQ+ |B|2R ACP +BCQ+ADQ+BDR
ACP +ADQ+BCQ+BDR |C|2P + CDQ+ CDQ+ |D|2R

)
=

(
H(A,B) . . .
. . . H(C,D)

)
By imposing this matrix to be equal to M we have

|AP +BQ|2 + ∆|B|2 = P 2 ⇒ |B| ≤ P√
∆
,

|CP +DQ|2 + ∆|D|2 = PR ⇒ |D|2 ≤ PR

∆
,

|BR+AQ|2 + ∆|A|2 = PR ⇒ |A|2 ≤ PR

∆
.

The bounds of the previous Proposition are completely explicit when hK = 1,
since we know tK and cK .

So we can just loop on all A,B,C,D satisfying these bounds, then select
only the matrices with discriminant |AD − BC| = 1. The following algorithm
needs to be run only once for each of our 9 imaginary quadratic �elds of class
number 1: it lists the �nite set of possibilities for AutH.

Algorithm 1. Lists all possible automorphism matrices M such that M ·HF =
HF (same hypothesis as in Proposition 2.2.6).

For each triple (A,B,D) satisfying the given bounds, do the following:

(1) Solve |AD − BC| = 1, for C ∈ O: AD − BC belongs to the �nite set O∗,
and we can solve for C.

(2) Consider the following 4× 4 matrix, with coe�cients in O:

W =


(|A|2 − 1) AB AB |B|2

AC (AD − 1) BC BD
AC BC (AD − 1) BD
|C|2 CD CD (|D|2 − 1)

 .

(3) Compute the rank r of W (over the �eld K).

(4) If r = 1 or r = 4, skip to the following quadruple (A,B,C,D).
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(5) If r = 0 output M =
(
A B
C D

)
(M is an automorphism acting on all

F ∈ F)

(6) If r = 2 or r = 3 output M =
(
A B
C D

)
(M is an automorphism acting

only on a boundary subspace).

Remark. We could also loop only on A,D and replace step (1) by :

(1) Solve |AD −BC| = 1 for B,C ∈ O. This time BC belongs to an explicit
�nite set, and we enumerate divisors.

Proposition 2.2.7. Let M = (A B
C D ) belong to AutHF , where HF is the Hes-

sian of some reduced cubic form F . If r is the rank of the matrix W constructed
in the above algorithm, then

• r = 0 if and only if B = C = 0 and A = D are units. Then M is an
automorphism for all Hermitian quadratic forms in F .

• r = 1 is impossible

• r = 2 or r = 3 then M is an automorphism for some linear subspace of
F , de�ned by explicit equations in the variables (P,Q,Q,R).

• r = 4 is impossible.

Proof. The condition (A B
C D ) ∈ Aut(P |x|2 + Qxy + Qxy + R|y|2) translates

to the linear system WX = 0, with X = (P,Q,Q,R)t.

• If r = 4, the only solution of the system is (0, 0, 0, 0) but this is not allowed
since P,R > 0.

• Assume that r ≤ 1 : the matrix (A B
C D ) has rank 2 so the two 2 by 2

matrices on the lower-left and upper-right corners ofW have rank 2 unless
B = C = 0. In this case W is diagonal

|A|2 − 1
AD − 1

AD − 1
|D|2 − 1

 .

Since B = C = 0, and AD − BC is a unit, we must have |A| = |D| = 1,
so this matrix has either rank 2 or 0 (when AD = AD = 1).

2.3 The algorithm

Algorithm 2. Given a bound X = D2, output the list of reduced binary cubic
forms modulo GL2(O), such that N (disc(F )) ≤ X.

For each quadruple F = (a, b, c, d) ∈ O4 satisfying all the inequalities in Theo-
rem 2.2.3 do the following
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(1) Approximate the complex roots of F , (α1, α2, α3) to a su�cient accuracy.
Then approximate HF = (P,Q,R) the associated Hermitian form.

(2) Check if HF is reduced (in particular if HF is �near� to the boundary of
the fundamental domain use Algorithm 3 (see below) to check exactly the
boundary condition). If not skip to the following F .

(3) Check whether F is irreducible in K[x, y]. If not skip to the following F .

(4) Apply Dedekind criterion to check whether F describes a maximal ring. If
not skip to the following F .

(5) Compute the set of all automorphisms Mi of HF and compute all the images
Mi · F . Check if F is the minimal element (for some order, for instance the
lexicographic one) in this set: if yes, print F .

Remarks.

• For the precision needed in step (1) refer to Appendix C.

• In step (5), we compute a list of automorphs for F to decide whether F
is the minimal in lexicographic order (in this case F should be keeped,
otherwise no). Another way to deal with this problem could be �stocking�
all those F and then checking GL2(O)-equivalence once we have all the
forms with a �xed discriminant D. The problem is that our algorithm,
does not assure that the output forms are ordered by discriminant, so we
could apply this test only at the end, and this would mean a lot more
space used for stocking all the automorphic forms. Moreover, this would
imply a double loop on the list which will make also the complexity grow.
That's why we preferred to apply immediately automorphism matrices so
that we don't have to keep anything in memory (recall that we just output
the �good� binary cubic form each time we �nd one, so we are not even
obliged to keep in memory the list of representatives of cubic extensions).

2.4 The case K = Q(i)

When K = Q(i) the fundamental domain for positive de�nite binary Hermitian
forms is given by  P ≤ R

−P/2 ≤ Re(Q) ≤ P/2
0 ≤ Im(Q) ≤ P/2.

We now specialize Theorem 2.2.3:

Theorem 2.4.1. Let F be an irreducible binary cubic form with coe�cients in
Z[i] which is reduced modulo SL2(Z[i]) and with discriminant D. Then

|a| ≤
(

2
3

)3/4

|D|1/4; |b| ≤ 3
(

27
2

)1/4

|D|1/4

|ad| ≤ 2
√

2|D|1/2; |bc| ≤ 9 · 6
√

6|D|1/2, |ac| ≤ 3
(

27
2

)1/2

|D|1/2 .
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As explained in Corollary 2.2.4, we can loop on all (a, b, c, d) given in Theorem
2.4.1 in time O(X1+ε), for any ε > 0.

Proposition 2.4.2. Let M = (A B
C D ) ∈ GL2(Z[i]), such that

M ·H = H,

then

|A| ≤ 1, |B| ≤ 1, |D| ≤ 1, |C|2 ≤ 2.

Proof. Bounds on |A| , |B| and |D| directly come from Proposition 2.2.6.
The bound on C then follows from Algorithm 1.

Proposition 2.4.3. If

H =
(
P Q
Q R

)
is not on the boundary of the fundamental domain, then its only automorphisms
are the ones in the following set:

AutGL2(Z[i])

(
P Q
Q R

)
=
{(

1 0
0 1

)
,

(
−1 0

0 −1

)
,

(
i 0
0 i

)
,

(
−i 0

0 −i

)}
Proof. This follows from Proposition 2.2.7.

2.4.1 Loops on a, b, c, d

When K = Q(i) we have seen that multiplication by i and −i give automor-
phisms on all cubic forms. So, in Algorithm 2, instead of looping over all a ∈ Z[i]
satisfying |a| ≤ amax, where

amax :=
(

2
3

)3/4

|D|1/4 ,

we can just restrict to just one quadrant, for example

{a : |a| ≤ amax,Re(a) ≥ 1, Im(a) ≥ 0, a 6= 0}

Moreover we noticed that [PGL2(O) : PSL2(O)] = 2, and a representative for

the nontrivial coset is σ =
(

i 0
0 1

)
. It sends an Hermitian form (P,Q,R) to

(P, iQ,R) = (P,− Im(Q) + iRe(Q), R), so we can restrict to binary Hermitian
forms such that Re(Q) ≥ 0 (with a border condition for Re(Q) = 0). This new
condition translates to a condition on the coe�cient c of the binary cubic form
F = (a, b, c, d). We can for example restrict c to the upper half plane:

{c : |c| ≤ cmax, Im(c) ≥ 1 if Re(c) < 0, Im(c) ≥ 0 otherwise }.

From now on let us call φ the function which takes a cubic form (a, b, c, d) to an
equivalent one (a′, b′, c′, d′) in the good quadrants.
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2.5 Implementation problems

2.5.1 Checking rigorously the boundary conditions

As the computation of P,Q,R involves �oating point approximations of the
complex roots of a polynomial in OK [X], it will not give, of course, exact results.
Those �oating point computations will in general be su�cient to test whether
the Hermitian form is strictly inside or outside the fundamental domain. But if
it is very near the boundary (or worse on the boundary), this approach fails.

For that we use the following formulas:

P = − |b|
2

|a|2
+ 3(|α1|2 + |α2|2 + |α3|2) (2.23)

Q =
bc

|a|2
+ 3(α1α2α3 + α1α2α3 + α1α2α3) (2.24)

R = − |c|
2

|a|2
+ 3(|α1|2|α2|2 + |α1|2|α3|2 + |α2|2|α3|2) (2.25)

Now we consider α1, α2, α3, α1, α2, α3 as algebraic numbers, and we let S be
the set of the six permutations �xing the αi, and acting as S3 on the αi. The
polynomial

gP =
∏
σ∈S

(X − σ(α1α1 + α2α2 + α3α3))

vanishes at |α1|2 + |α2|2 + |α3|2, and its coe�cients are symmetric in (α1, α2, α3)
and (α1, α2, α3) independently. They can thus be expressed in terms of (b/a, c/a, d/a)
and (b/a, c/a, d/a). The polynomial fP (X) = gP

(
X
3 −

|b|2

3|a|2

)
vanishes at P and

belongs to K[X].
In the same way we can compute polynomials in K[X] vanishing at Q,

R, Re(Q) or Im(Q). Such polynomials are easily computed using a computer
algebra system like Maple (and it is su�cient to compute them once for all);
the polynomials gP , gQ, gR and so on are given in Appendix D � before the
trivial linear change of variable yielding fP , fQ, fR, etc.

We want to verify rigorously boundary conditions, for instance P = R: if fP
and fR have no common factor in K[X], then P 6= R. But this is not enough:
we also want to check whether P < R or P > R, i.e. if the point we are testing
is �inside� or �outside� the fundamental domain.

The following theorem of Mahler [41] provides the accuracy we need for our
�oating point computations:

Theorem 2.5.1 (Mahler). Let f = a0x
m + a1x

m−1 + · · · + am = a0(x −
α1) · · · (x− αm) be a separable polynomial of degree m ≥ 2, and let

∆(f) = min
1≤i<j≤m

|αi − αj |

be the minimal distance between two distinct roots of f . Then

∆(f) >
√

3m−(m+2)/2|disc(f)|1/2M(f)−(m−1),

where disc(f) is the discriminant of f , and M(f) = |a0|
∏m
h=1 max(1, |αh|).

This translates to the following algorithm:
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Algorithm 3 (Checking an algebraic identity). Let α and β ∈ R be two al-
gebraic numbers, and let A and B ∈ K[X] \ 0 that vanish at α, and β respec-
tively. Assume we can compute �oating point approximations α̂ and β̂ such that

|α− α̂| < ε,
∣∣∣β − β̂∣∣∣ < ε, for any �xed ε > 0.

We want to decide whether α < β, α > β or α = β.

(1) Let C = AB and f = C/gcd(C,C ′).

(2) If the degree of f is 1, then answer α = β.

(3) Compute a good approximation ∆̂ of

∆(f) =
√

3m−(m+2)/2|disc(f)|1/2M(f)−(m−1),

where disc(f) and M(f) are de�ned in Theorem 2.5.1 such that ∆̂ ≤ ∆(f).

(4) Compute α and β at precision ε = ∆̂/4, i.e. α̂ and β̂ such that

|α− α̂| < ε,
∣∣∣β − β̂∣∣∣ < ε.

(5) If |α̂− β̂| < 2ε, answer α = β.

(6) If α̂ < β̂, answer α < β.

(7) If α̂ > β̂, answer α > β.

Proof. The polynomial f is non constant and has α and β among its roots.
If its degree is 1, then α = β. Otherwise, assume �rst that |α̂− β̂| < 2ε. Then

|α− β| ≤ |α− α̂|+
∣∣∣β − β̂∣∣∣+

∣∣∣α̂− β̂∣∣∣ < 4ε ≤ ∆(f).

Hence α = β by Mahler's theorem in this case, proving (5).
We now assume that |α̂− β̂| ≥ 2ε; since

α− β = α̂− β̂ + (α− α̂)− (β − β̂)

and ∣∣∣(α− α̂)− (β − β̂)
∣∣∣ < 2ε,

α− β and α̂− β̂ have the same sign.

Proposition 2.5.2. The smallest ε that we can obtain in step (4) of the above
algorithm (i.e. the maximal precision needed) is � X−β , for some positive
constant β.

Remark. That means that for our computation we will need at most Ω(logX)
signi�cant digits.

Proof. Our algorithm loops over reduced integral cubic forms F = (a, b, c, d) ∈
(OK)4 with discriminant disc(F ) satisfying |disc(F )|2 ≤ X. In particular, The-
orem 2.2.3 implies that |a| � X1/8.
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For each such form, we may compute various separable polynomials f with
coe�cients in a−uOK , for some bounded integer u. Then disc(f) is non zero,
in a−4uOK . Its norm is a non-zero rational integer divided by |a|−8u, hence
� X−u. Thus disc(f)� X−u/2.

Landau's theorem (see [4, Proof of Theorem 13.1] for example) tells us that

M(f) ≤ ‖f‖2

and the coe�cients of f are monomials in e1, e2, e3, f1, f2, f3 (see Appendix D).
Each one of these is bounded by c · Xα, for an appropriate constant c and
exponent α.

We have
∆(f)�M(f)−(m−1).

So we obtain
‖f‖2 � Xβ ,

but then we can conclude that ∆(f)� X−β .

2.5.2 An idea to count only half of the extensions

It is easy to remark that if H = (P,Q,R) is in the fundamental domain, then
also H ′ = (P,−Q,R) is. And, in general,these two Hermitian forms are not
equivalent modulo GL2(O).

In particular, if F = (a, b, c, d) has HF = H, then F ′ = (a,−b, c,−d) gives
HF ′ = H ′.

This allow us to loop only on half of the c satisfying the given bounds.
Then construct both the forms F = (a, b, c, d) and F ′ = (a,−b, c,−d) and we

check if they are equivalent (comparing F ′ with the list of automorphic functions
to F ). If not we verify also the list of automorphic functions to F ′ to see if one
of them will be found in our loops, and if both the answers are no, we add this
second form F ′ to our output list.

2.5.3 Loop on d

Once we have �xed (a, b, c), we could loop on |d| ≤ dmax but this will be very
slow.

The idea is to consider the formula of the discriminant of the cubic form F :

D = Ad2 +Bd+ C,

with A = −27a2, B = 18abc − 4b3 and C = b2c2 − 4ac3. Next we can �nd the
solutions x1, x2 of the polynomial Ax2 +Bx+C so that D = A(d−x1)(d−x2).
As we know that |D| ≤ X, then we get |d − x1||d − x2| ≤ X/|A|. Now let us
suppose that |d− x1| and |d− x2| are ≥ 1/2. Then we obtain{

|d− x1| ≤ 2X/|A|
|d− x2| ≤ 2X/|A| ,

and the set of the solutions d is given by the intersection of the two circles of
centre x1 and x2 and ray 2X/|A|.

On the other case, if |d − xi| < 1/2 for i = 1 or 2, then we just need to
consider as possible d the two points dx1c and dx2c.
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Now let us consider

|x1 − x2| =
√
|∆|
|A|

,

where ∆ = B2 − 4AC. If |x1 − x2| > 4X/|A|, then the two circles described
above have no intersection, so the only possible d are dx1c and dx2c. In the
other case, if the two circles have intersection, we have to consider both their
intersection and dx1c and dx2c.

This method allows us to make a much smaller loop on d.

2.5.4 Another kind of reduction

After personal conversation with J. Cremona, I tried to apply a di�erent kind
of reduction, which can be found in [23, 54, 24].

Let us consider the subgroup S of GL2(O) of unimodular substitutions of
the kind

τk :
{
x→ x+ k
y → y

,

that is the set matrices of the form τk =
(

1 k
0 1

)
, with k ∈ O.

This transformations send

(a, b, c, d)→ (a, b+ 3ak, 3ak2 + 2bk + c, ak3 + bk2 + ck + d).

So it is always possible to replace a cubic form F0 = (a0, b0, c0, d0) by an equiv-
alent one, F = (a, b, c, d) obtained by applying an element of S and such that
b is reduced modulo 3a (after we have chosen a fundamental parallelotope for
the lattice generated by 3a and 3aω, where 〈1, ω〉 is a �xed basis for OK).

De�nition 2.5.3. Let F0 = (a0, b0, c0, d0) ∈ (Sym3O2)∗ be a binary cubic
form. And let us �x once and for all a choice of a fundamental parallelotope
Pu,v for the lattice generated by two elements u, v ∈ OK . We associate to F0

the equivalent form F = (a, b, c, d) ∈ (Sym3O2)∗ such that F = τK(F0), for
some k ∈ OK and that the second component of F , b is in the fundamental
parallelotope P3a,3aω We will call such form F τ -reduced.

Remark. This F is unique if we �x a unique choice for points on the border of
P.
In particular, we can apply this new reduction to Julia-reduced forms. On
the way back, if we have a τ -reduced form F = (a, b, c, d) which comes from
a Julia-reduced form, then the unimodular transformation τk which sends it
back to the Julia reduced one is given by k = dQ/P c, where (P,Q,R) is the
covariant HF associated to F . In fact, unimodular transformations in S leave P
unchanged and send Q→ Q− kP , so τk will send (P,Q,R) to (P,Q0, R0) such
that |Re(Q)| ≤ P/2 and | Im(Q)| ≤ P/2, and can only increase R, so P ≤ R0.

Moreover, elements of S leave unchanged PH = b2 − 3ac (this is the �rst
coe�cient of the Hessian of our cubic form, but it is not true in general that it
is the �rst coe�cient of our covariant HF !)and UH = 2b3 + 27a2d − 9abc and,
as is shown in Womack's thesis [54] we have

|a| ≤ 3−3/4t
−3/2
K D1/4
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and
|U | ≤ 33/4t

−3/2
K D3/4

so from the sygyzy
4P 3 = U2 + 27Da2

we obtain

PH ≤ cHD1/2, (2.26)

where cH = 31/22−1/3t−1
K . In particular when K = Q(i), we get cH = 1, 944...

so we get

Proposition 2.5.4. Let F = (a, b, c, d) be a τ -reduced binary cubic form then

|c| ≤ |b|
2 + cH |D|1/2

3|a|
.

Proof. Immediate from (2.26).

Remark. This di�erent kind of reduction does not change the complexity of
the algorithm, which is still in Oε(X1+ε) but it changes the constant implied in
this complexity. In fact, the algorithm goes more than 6 times faster, wich is
not negligible in practice.

Algorithm 4 (τ -reduction). Let K be an imaginary quadratic number �eld
of class number 1. This algorithm loops over all the binary cubic forms F ′ =
(a′, b′, c′, d′) with N disc(F ) ≤ X2, which are τ -reduced, and associates the cor-
responding Julia reduced binary cubic form F = (a, b, c, d).

For each a′, b′, c′, d′ in O satisfying the following properties:

• |a′| ≤ amax =
(

1
tK
√

3

)3/2

X1/8,

• b′ belongs to P3a′,3a′ω

• |c′| ≤ |b
′|2+cHX

1/4

3|a′| ,

• N (disc(a′, b′, c′, d′)) ≤ X2. (This last condition bounds d′.)

Do the following:

(1) compute the �rst two coe�cients P ′, Q′ of the covariant HF ′ of the cubic
form F ′ = (a′, b′, c′, d′).

(2) Set k the closest point to Q/P in O; select a �xed rounding rule to break
ties (for instance, select the lexically smallest point).

(3) Compute F = (a, b, c, d) = τk(a′, b′, c′, d′).

(4) Continue from step (2) of Algorithm 2.
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2.6 Results

We programmed the algorithm for the case K = Q(i) in Pari/GP.
Here are some results we got on an Intel Xeon 5160 dual core, 3.0 GHz.
X is the bound on d(L/K), N(X) is the number of isomorphism classes of

cubic extensions of Q(i) up to that bound, and t is the running time of the
algorithm. Finally t′ is the time needed to do the same computation but using
the version of ray class �eld algorithm that we describe in Appendix B.1.

X N(X) t t′

104 276 5 s 16s
4 · 104 1339 19 s 1mn 18s
9 · 104 3305 56 s 3mn 45s

106 42692 24 mn 1 s 2h 52mn 9s
4 · 106 181944 2 h 49 mn 34h 24 mn 8s
9 · 106 421559 9 h 37 mn > 134 h

108 4990974 359 h 25 mn > 2720 h

2.6.1 List of cubic extensions of Q(i) up to Nd(L/Q(i)) ≤
104

Nd(L/Q(i)) P (X)
169 x3 + (1 + 2i)x2 + 2ix+ i
169 x3 + (2 + i)x2 + 2ix− 1
353 x3 + (2 + 2i)x2 + 3ix− 1
353 x3 + (2 + 2i)x2 + 3ix+ i
484 x3 + (2 + 2i)x2 + 4ix+ (−1 + i)
529 x3 + 2x2 + x+ 1
745 x3 + 2ix2 − x− 1
745 x3 + 2x2 + x+ i
772 x3 + 2ix2 − 2x+ (1− i)
772 x3 + 2x2 + 2x+ (1− i)
841 x3 + (2 + 2i)x2 + (−1 + i)x− i
932 x3 + (1 + 2i)x2 + ix+ 1
932 x3 + (2 + i)x2 + ix− i
953 x3 + (2 + 2i)x2 + (−1 + 2i)x− i
953 x3 + (2 + 2i)x2 + (1 + 2i)x+ 1
961 x3 + 2x2 + x− 1
1025 x3 + (2 + 2i)x2 + ix− i
1025 x3 + (2 + 2i)x2 + ix+ 1
1289 x3 + (2 + 2i)x2 + 2ix− i
1289 x3 + (2 + 2i)x2 + 2ix+ 1
1369 x3 + (2 + 2i)x2 + (−2 + 3i)x+ (−2− i)
1369 x3 + (2 + 2i)x2 + (2 + 3i)x+ (1 + 2i)
1444 x3 + (1 + i)x2 + (1− i)
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1508 x3 + 2ix2 + (−1− i)x+ (1 + i)
1508 x3 + 2x2 + (1− i)x+ (−1− i)
1513 x3 + (2 + 2i)x2 + 3ix+ (−2 + i)
1513 x3 + (2 + 2i)x2 + 3ix+ (−1 + 2i)
1665 x3 + (1 + 2i)x2 + (−2 + 2i)x− i
1665 x3 + (2 + i)x2 + (2 + 2i)x+ 1
1696 x3 + (2 + 2i)x2 + (−2 + 3i)x− 2
1696 x3 + (2 + 2i)x2 + (2 + 3i)x+ 2i
1700 x3 + (1 + 2i)x2 + (−2 + i)x+ (−1− 2i)
1700 x3 + (2 + i)x2 −+ (2 + i)x+ (2 + i)
1721 x3 + 2ix2 − 2x+ 1
1721 x3 + 2x2 + 2x− i
1753 x3 + ix2 + x+ (−1 + i)
1753 x3 + x2 − x+ (−1 + i)
1825 x3 + 2ix2 + (−1− i)x+ i
1825 x3 + 2x2 + (1− i)x− 1
2017 x3 + 2ix2 + (−3 + i)x− i
2017 x3 + 2x2 + (3 + i)x+ 1
2036 x3 + ix2 + 2ix+ (−1− i)
2036 x3 + x2 + 2ix+ (1 + i)
2180 x3 + (−1− i)x+ (1 + i)
2180 x3 + (1− i)x+ (−1− i)
2257 x3 + (2 + 2i)x2 + (−1 + 3i)x+ (−2− i)
2257 x3 + (2 + 2i)x2 + (1 + 3i)x+ (1 + 2i)
2297 x3 + (1 + 2i)x2 − 2x+ (1− 2i)
2297 x3 + (2 + i)x2 + 2x+ (2− i)
2305 x3 + (1 + 2i)x2 − 2x+ 1
2305 x3 + (2 + i)x2 + 2x− i
2401 x3 + 2x2 − x− 1
2404 x3 + (1 + 2i)x2 + 3ix+ (−1 + 2i)
2404 x3 + (2 + i)x2 + 3ix+ (−2 + i)
2417 x3 + ix2 + (−2 + i)x− 2i
2417 x3 + x2 + (2 + i)x+ 2
2512 x3 + 2ix2 + (−2 + i)x− 2i
2512 x3 + 2x2 + (2 + i)x+ 2
2516 x3 + 2ix2 − x+ (−1− i)
2516 x3 + 2x2 + x+ (1 + i)
2704 x3 + (2 + 2i)x2 + 5ix+ (−2 + 2i)
2809 x3 + (1 + i)x2 + 2x+ (2 + i)
2916 x3 + (1 + i)
2932 x3 − x+ (1 + i)
2932 x3 + x+ (−1− i)
3028 x3 + (1 + 2i)x2 + (1− i)
3028 x3 + (2 + i)x2 + (1− i)
3104 x3 + (2 + 2i)x2 + 3ix− 2
3104 x3 + (2 + 2i)x2 + 3ix+ 2i
3161 x3 + (1 + 2i)x2 − 2x+ (−1− 2i)
3161 x3 + (2 + i)x2 + 2x+ (2 + i)
3172 x3 + (2 + 2i)x2 + 2ix+ (−1− i)
3172 x3 + (2 + 2i)x2 + 2ix+ (1 + i)
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3209 x3 + 2ix2 + (−2− i)x+ (2− i)
3209 x3 + 2x2 + (2− i)x+ (1− 2i)
3257 x3 + (1 + i)x2 + (−1− i)x+ (1− 2i)
3257 x3 + (1 + i)x2 + (1− i)x+ (2− i)
3313 x3 + (2 + 2i)x2 + (−1 + 2i)x+ (−1− 2i)
3313 x3 + (2 + 2i)x2 + (1 + 2i)x+ (2 + i)
3412 x3 + 2ix2 + (−1 + 2i)x+ (−1− i)
3412 x3 + 2x2 + (1 + 2i)x+ (1 + i)
3460 x3 + 2ix2 − 2ix+ (1 + i)
3460 x3 + 2x2 − 2ix+ (−1− i)
3481 x3 + x2 − x− 2
3601 x3 + (1 + i)x2 − ix+ (1− 2i)
3601 x3 + (1 + i)x2 − ix+ (2− i)
3716 (1 + i)x3 + 4ix2 + (−3 + 3i)x+ (−2− i)
3716 (1 + i)x3 + 4ix2 + (−3 + 3i)x+ (−2 + i)
3721 x3 + ix2 + (−2 + 2i)x+ (−1− 2i)
3721 x3 + x2 + (−1 + 2i)x+ (−1 + i)
3721 x3 + x2 + (2 + 2i)x+ (2 + i)
3737 x3 + (2 + 2i)x2 + (−1 + 3i)x− 3
3737 x3 + (2 + 2i)x2 + (1 + 3i)x+ 3i
3793 x3 + (2 + 2i)x2 + (−2 + 2i)x+ (−1− 2i)
3793 x3 + (2 + 2i)x2 + (2 + 2i)x+ (2 + i)
3809 x3 + 2ix2 + (−3− i)x− 3i
3809 x3 + 2x2 + (3− i)x+ 3
3908 x3 + (−1− i)x+ (−1 + i)
3908 x3 + (1− i)x+ (−1 + i)
3940 x3 − 2x+ (1 + i)
3940 x3 + 2x+ (−1− i)
4036 x3 + (1 + i)x2 + 2ix+ (−1− i)
4036 x3 + (1 + i)x2 + 2ix+ (1 + i)
4052 x3 + (−1− 2i)x+ (−1 + i)
4052 x3 + (1− 2i)x+ (−1 + i)
4084 x3 + (1 + i)x2 − x− 2i
4084 x3 + (1 + i)x2 + x+ 2
4196 x3 + (1 + 2i)x2 + (−2 + 3i)x− 3
4196 x3 + (2 + i)x2 + (2 + 3i)x+ 3i
4217 (1 + i)x3 + (1 + 4i)x2 + (−1 + 4i)x+ (−2 + i)
4217 (1 + i)x3 + (2 + i)x2 + x− 1
4304 x3 + 2ix2 + (−2− i)x+ 2
4304 x3 + 2x2 + (2− i)x− 2i
4432 x3 + (1 + 2i)x2 + (−3 + i)x+ (1− i)
4432 x3 + (2 + i)x2 + (3 + i)x+ (1− i)
4537 x3 + 2ix2 + (−1 + i)x+ (−2− i)
4537 x3 + 2x2 + (1 + i)x+ (1 + 2i)
4777 x3 + ix2 + (1 + i)x+ (−2 + i)
4777 x3 + x2 + (−1 + i)x+ (−1 + 2i)
4825 x3 + (1 + 2i)x2 + (−1− i)x+ (1− 2i)
4825 x3 + (2 + i)x2 + (1− i)x+ (2− i)
4900 x3 + (2 + 2i)x2 + 2ix+ (1− i)
4932 x3 + 2ix2 + (1 + i)x+ (−1 + i)
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4932 x3 + 2x2 + (−1 + i)x+ (−1 + i)
5057 x3 + ix2 + ix− 2
5057 x3 + x2 + ix+ 2i
5065 x3 + 2ix2 + (−3− i)x+ (−1− 2i)
5065 x3 + 2x2 + (3− i)x+ (2 + i)
5105 x3 + (1 + 2i)x2 − 2x− 3i
5105 x3 + (2 + i)x2 + 2x+ 3
5113 x3 + (1 + 2i)x2 − x− 2i
5113 x3 + (2 + i)x2 + x+ 2
5161 x3 + 2ix2 + (−3− 2i)x+ (2− i)
5161 x3 + 2x2 + (3− 2i)x+ (1− 2i)
5329 x3 + 2ix2 + (−4 + i)x− 3i
5329 x3 + 2x2 + (4 + i)x+ 3
5364 x3 + 2ix2 + (−3− 2i)x+ (1− i)
5364 x3 + 2x2 + (3− 2i)x+ (1− i)
5449 x3 + (1 + 2i)x2 + (−2 + 2i)x+ (−2 + i)
5449 x3 + (2 + i)x2 + (2 + 2i)x+ (−1 + 2i)
5465 x3 + (1 + i)x2 − 2ix+ (1− 2i)
5465 x3 + (1 + i)x2 − 2ix+ (2− i)
5476 x3 + (2 + 2i)x2 + (1− i)
5569 x3 + ix2 + (1 + i)x+ (−1 + 2i)
5569 x3 + x2 + (−1 + i)x+ (−2 + i)
5729 x3 + (2 + 2i)x2 + 4ix+ (−3 + 2i)
5729 x3 + (2 + 2i)x2 + 4ix+ (−2 + 3i)
5776 x3 + (2 + 2i)x2 + 3ix+ (−2 + 2i)
5792 x3 + 2ix2 + (−4 + i)x+ (−2− 2i)
5792 x3 + 2x2 + (4 + i)x+ (2 + 2i)
5849 x3 + 2ix2 + (−1− 2i)x+ (2 + i)
5849 x3 + 2x2 + (1− 2i)x+ (−1− 2i)
5956 x3 + (1 + 2i)x2 + (−2 + i)x+ 1
5956 x3 + (2 + i)x2 + (2 + i)x− i
5972 x3 + 2ix2 + x+ (−1 + i)
5972 x3 + 2x2 − x+ (−1 + i)
6065 x3 + ix2 + x+ (−1− i)
6065 x3 + x2 − x+ (1 + i)
6100 (1 + i)x3 + (1 + 5i)x2 + (−3 + 6i)x+ (−2 + 2i)
6100 (1 + i)x3 + (2 + 2i)x2 + (1 + 2i)x+ 1
6241 (1 + i)x3 + 5ix2 + (−4 + 5i)x− 2
6304 x3 + (2 + 2i)x2 + ix− 2i
6304 x3 + (2 + 2i)x2 + ix+ 2
6553 x3 + (1 + 2i)x2 + (−2 + i)x− 2
6553 x3 + (2 + i)x2 + (2 + i)x+ 2i
6561 x3 + 3ix+ (−2− i)
6561 x3 + 3ix+ (1 + 2i)
6561 x3 + 3x− i
6561 (1 + i)x3 + 3ix2 + 3ix+ 2i
6569 x3 + 2ix2 + (−1− i)x+ (2 + i)
6569 x3 + 2x2 + (1− i)x+ (−1− 2i)
6625 x3 + (1 + 2i)x2 + (2− i)
6625 x3 + (2 + i)x2 + (1− 2i)
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6889 x3 + 2x2 + 2x− 1
6928 x3 + 2ix2 − ix+ 2i
6928 x3 + 2x2 − ix− 2
7072 (1 + i)x3 + 4ix2 + (−3 + 2i)x− 2
7072 (1 + i)x3 + 4ix2 + (−2 + 3i)x− 2
7200 x3 + ix2 + (1− i)x+ (−1− i)
7200 x3 + x2 + (−1− i)x+ (1 + i)
7265 x3 + (1 + 2i)x2 + (−2− i)x− 2i
7265 x3 + (2 + i)x2 + (2− i)x+ 2
7328 x3 + (1 + 2i)x2 + (−3 + 3i)x+ (−3− i)
7328 x3 + (2 + i)x2 + (3 + 3i)x+ (1 + 3i)
7345 x3 + (1 + 2i)x2 + (−3 + i)x+ (1− 2i)
7345 x3 + (2 + i)x2 + (3 + i)x+ (2− i)
7345 x3 + (2 + 2i)x2 + (1− 2i)
7345 x3 + (2 + 2i)x2 + (2− i)
7396 x3 + 2ix+ (1− i)
7460 x3 + 2ix2 + (−3 + i)x+ (−1− 3i)
7460 x3 + 2x2 + (3 + i)x+ (3 + i)
7529 x3 + ix2 + (−1− 2i)x+ 2
7529 x3 + x2 + (1− 2i)x− 2i
7569 x3 + 2x2 + 3x+ 3
7684 x3 + 2ix2 − 4x+ (1− 3i)
7684 x3 + 2x2 + 4x+ (3− i)
7760 x3 + (1 + 2i)x2 + (−3 + i)x+ (−1− 3i)
7760 x3 + (2 + i)x2 + (3 + i)x+ (3 + i)
7801 x3 + ix2 − 2x+ (1− 2i)
7801 x3 + x2 + 2x+ (2− i)
7888 x3 + (1 + 2i)x2 + (−3 + 3i)x+ (−1− i)
7888 x3 + (2 + i)x2 + (3 + 3i)x+ (1 + i)
7921 (1 + i)x3 + (2 + i)x2 + x+ (1− i)
7988 (1 + i)x3 + (1 + 5i)x2 + (−1 + 6i)x+ (−2 + 2i)
7988 (1 + i)x3 + (2 + 2i)x2 + x− 1
8065 x3 + ix2 + (−1 + i)x+ (−1− 2i)
8065 x3 + x2 + (1 + i)x+ (2 + i)
8080 x3 + 2ix2 + (−4 + i)x− 2i
8080 x3 + 2x2 + (4 + i)x+ 2
8081 x3 + 2ix2 + (−4− i)x+ (1− 2i)
8081 x3 + 2x2 + (4− i)x+ (2− i)
8185 x3 + (1 + 2i)x2 + (−2 + i)x+ (−2− 2i)
8185 x3 + (2 + i)x2 + (2 + i)x+ (2 + 2i)
8212 (1 + i)x3 + (1 + 5i)x2 + (−2 + 5i)x+ (−2 + 2i)
8212 (1 + i)x3 + (2 + 2i)x2 + (2 + i)x− i
8324 x3 + (1 + 2i)x2 + (−2 + 3i)x+ (−1− 2i)
8324 x3 + (2 + i)x2 + (2 + 3i)x+ (2 + i)
8420 x3 + ix2 + x+ (−1 + 2i)
8420 x3 + x2 − x+ (−2 + i)
8480 (1 + i)x3 + (1 + 2i)x2 + 2ix+ (1 + i)
8480 (1 + i)x3 + (2 + 5i)x2 + (−1 + 7i)x+ (−1 + 2i)
8489 x3 + ix2 + (−2− 2i)x+ i
8489 x3 + x2 + (2− 2i)x− 1
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8545 x3 + (1 + 2i)x2 + x+ 2
8545 x3 + (2 + i)x2 − x− 2i
8577 x3 + 2ix2 + (−2 + 2i)x+ (−2 + i)
8577 x3 + 2x2 + (2 + 2i)x+ (−1 + 2i)
8585 x3 + ix2 + (−1− 3i)x+ (1− 2i)
8585 x3 + x2 + (1− 3i)x+ (2− i)
8585 x3 + (1 + 2i)x2 + (−3 + i)x+ (−2− 3i)
8585 x3 + (2 + i)x2 + (3 + i)x+ (3 + 2i)
8608 x3 + 2ix2 + (−2 + i)x+ (−2− 2i)
8608 x3 + 2x2 + (2 + i)x+ (2 + 2i)
8705 x3 + 2ix2 + (−4− i)x+ (−1− 2i)
8705 x3 + 2x2 + (4− i)x+ (2 + i)
8713 x3 + (2 + 2i)x2 + (−1 + 5i)x+ (−4 + i)
8713 x3 + (2 + 2i)x2 + (1 + 5i)x+ (−1 + 4i)
8852 x3 + ix2 + 2x+ (−1− i)
8852 x3 + x2 − 2x+ (1 + i)
8980 x3 + (1 + 2i)x2 + (−2 + 4i)x+ (−3 + i)
8980 x3 + (2 + i)x2 + (2 + 4i)x+ (−1 + 3i)
9065 x3 + (1 + 2i)x2 + (1 + i)x+ (2 + i)
9065 x3 + (2 + i)x2 + (−1 + i)x+ (−1− 2i)
9113 x3 + ix2 + (−1 + i)x+ (−2− i)
9113 x3 + x2 + (1 + i)x+ (1 + 2i)
9161 x3 + 2ix2 − 3x+ (−2− i)
9161 x3 + 2x2 + 3x+ (1 + 2i)
9169 x3 + (2 + 2i)x2 − x+ (1− 2i)
9169 x3 + (2 + 2i)x2 + x+ (2− i)
9248 x3 + 2ix2 + (−2 + 3i)x+ (−2− 2i)
9248 x3 + 2x2 + (2 + 3i)x+ (2 + 2i)
9297 x3 + ix2 − 2ix+ (2 + i)
9297 x3 + x2 − 2ix+ (−1− 2i)
9409 x3 + (2 + 2i)x2 + (−3 + 4i)x+ (−6 + i)
9409 x3 + (2 + 2i)x2 + (3 + 4i)x+ (−1 + 6i)
9425 x3 + (−2 + i)x+ (−2 + i)
9425 x3 + (2 + i)x+ (−1 + 2i)
9505 x3 + (1 + 2i)x2 + (−4 + i)x+ (−2− 2i)
9505 x3 + (2 + i)x2 + (4 + i)x+ (2 + 2i)
9521 x3 + (1 + 2i)x2 + (−3 + i)x+ (−3− 2i)
9521 x3 + (2 + i)x2 + (3 + i)x+ (2 + 3i)
9540 x3 + 2ix2 + (−3 + i)x+ (1− i)
9540 x3 + 2x2 + (3 + i)x+ (1− i)
9593 x3 + ix2 + (−1 + 3i)x+ (−2− i)
9593 x3 + x2 + (1 + 3i)x+ (1 + 2i)
9649 x3 + (1 + i)x2 + (−2− i)x− 3i
9649 x3 + (1 + i)x2 + (2− i)x+ 3
9700 x3 + ix2 + ix+ (−2 + i)
9700 x3 + x2 + ix+ (−1 + 2i)
9760 x3 + (1 + i)x2 + 3ix+ (−1− i)
9760 x3 + (1 + i)x2 + 3ix+ (1 + i)
9764 x3 + ix2 − 3x+ (1− 2i)
9764 x3 + x2 + 3x+ (2− i)
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9972 x3 + (1 + 2i)x2 + (−2 + 2i)x+ (−3− i)
9972 x3 + (2 + i)x2 + (2 + 2i)x+ (1 + 3i)
10000 x3 + (1 + i)x2 − ix+ (−1 + i)
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Appendix A

A.1 Taniguchi's theorem

De�nition A.1.1. Let O be a Dedekind domain.

• Let C(O) be the set of �cubic algebras� that is, isomorphism classes of
O-algebras that are projective of rank 3 as O-modules.

• For every fractional ideal a of O we de�ne

C(O, a) = {R ∈ C(O) | St(R) = a},

where St(R) ∈ Cl(O) is the Steinitz class of R. Let further

Ga =

{(
α ∈ O β ∈ a−1

γ ∈ a δ ∈ O

) ∣∣∣∣∣ αδ − βγ ∈ O×
}
,

Va = {F = (a, b, c, d) | a ∈ a, b ∈ O, c ∈ a−1, d ∈ a−2}.

• If F ∈ Va, its discriminant disc(F ) = b2c2−27a2d2 +18abcd−4ac3−4b3d
belongs to a−2.

• We consider elements of Va as binary cubic forms so (a, b, c, d) = ax3 +
bx2y + cxy2 + dy3 and we de�ne the action of Ga on Va by

M.F = (detM)−1F (αx+ γy, βx+ δy),

where M =
(
α β
γ δ

)
∈ Ga (this twisted action makes the representation

faithful, the usual one has kernel µ3).

Theorem A.1.2 (Taniguchi). There exists a canonical bijection between C(O, a)
and Va/Ga such that the following diagram is commutative:

Va/Ga −−−−→ C(O, a)

disc

y yd

a−2/(O×)2 ×a2

−−−−→ {integral ideals of O}

where d is the relative discriminant ideal map.
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Proof. For the sake of completeness, we reprove this theorem in this Ap-
pendix.

We will not strictly follow Taniguchi's proof, but we will also take some
elements from previous proofs of the result over Z ([28], [34], [5] and [7]).

Let R ∈ C(O, a). Let us choose a representative of an element R ∈ C(O, a)
in the form

R = 1R · O + ω1 · O + ω2 · a,

for appropriate ω1, ω2, ω3 ∈ Frac(R) := R⊗O K.
Let us write

ω1ω2 = α+ βω1 + γω2;

since ω1(aω2) ⊂ R, we have α, β ∈ a−1 and γ ∈ aa−1 = O.
Hence we can normalize our basis ω1, ω2 by replacing it by ω1−γ and ω2−β,

if needed, to obtain aω1ω2 ∈ O · 1R
We know that a cubic ring with a normalized basis is determined up to

isomorphism by the products ω2
1 = j − bω1 + aω2

ω2
2 = l − dω1 + cω2

ω1ω2 = m
(A.1)

By associativity of the product (in particular ω1 · (ω2
2) = (ω1ω2) · ω2) we obtain l = −bd

m = −ad
j = −ac

, (A.2)

so R is determined up to isomorphism by (a, b, c, d), and since Oω2
1 , a

2ω2
2 ⊂ R

we have

a ∈ a, b ∈ O, c ∈ a−1, d ∈ a−2,

So we de�ne φ : C(O, a) −→ Va, which associates to a representative R ∈ C(O, a)
the element (a, b, c, d) ∈ Va given by the product laws (A.1) and we de�ne
ψ : Va −→ C(O, a) which associates to an element (a, b, c, d) ∈ Va the O-module
O ⊕O ⊕ a provided by the multiplication law given by (A.1) and (A.2), which
makes it an O-algebra.

Now C(O, a) is de�ned modulo isomorphism, so we have to take into account

basis changes. Let us consider matrices

(
A B
C D

)
∈ M2(K) (K = Fr(O)),

with discriminant ad − bc ∈ O×. It is easy to prove that the subgroup which
�xes R/O = O ⊕ a by left multiplication is exactly Ga.

Moreover, once we apply this basis change, computations will show that the
binary cubic form (a′, b′, c′, d′) ∈ Va corresponding to 〈ω′1, ω′2〉 will be obtained
by the action of M on (a, b, c, d). So we have �nished the proof of the bijection.

Let us prove that the diagram is commutative.
Is is su�cient to prove it locally, so we can assume that O is a discrete

valuation ring, so we are in the case of a principal ideal domain. First of all
remark that d is well-de�ned since an O-algebras isomorphism preserves the
discriminant.
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Since 〈1, ω1, ω2〉 is a basis of R we have that the discriminant of the ring is

DR = D 〈1, ω1, ω2〉 =

∣∣∣∣∣∣
Tr(1) Tr(ω1) Tr(ω2)

Tr(ω1) Tr(ω2
1) Tr(ω1ω2)

Tr(ω2) Tr(ω1ω2) Tr(ω2
2)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
3 −b c
−b b2 − 2ac −3ad
c −3ad c2 − 2bd

∣∣∣∣∣∣
= b2c2 + 18abcd− 4ac3 − 4b3d− 27a2d2 = disc(a, b, c, d).

Finally, since R = 1 · O ⊕ ω1 · O ⊕ ω2 · a and this is a pseudo-basis, then the
formula for the relative discriminant ideal is

d(R) = disc(a, b, c, d) · a2,

and we conclude.
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Appendix B

B.1 Another algorithm to enumerate cubic ex-
tensions

Another way to list cubic extensions of a given number �eld K is given by class
�eld theory.

In fact we know there is a bijection between Abelian extensions L/K (modulo
isomorphism) and equivalence classes of congruence subgroups (m, Am(L/K))
where m is a suitable modulus for the extension L/K and Am denotes the Artin
group associated to the modulus m and the extension L/K [12, Theorem 3.5.1].

B.1.1 Quadratic extensions

Let K be a number �eld. Since quadratic extensions are all Abelian, we can
just apply the bijection to list all the extensions K2/K of degree 2.

Algorithm 5 (List of relative quadratic extensions). [12, Algorithm 9.2.4]
Given a number �eld K and a bound B, this algorithm outputs a list of all rela-
tive extensions K2/K of degree 2, modulo isomorphism such that N (d(K2/K)) ≤
B.

(1) Compute the list L0 of all the ideals m0 of norm ≤ B which are conductors
at 2 (i.e. for all p | m0, vp(m0) = 1 if p - 2, while 2 ≤ vp(m0) ≤ 2e(p/2) + 1
if p | 2).

(2) Compute the list L of all moduli of the form m = m0m∞, with m0 ∈ L0 and
m∞ ranges through all the subsets of the real places of K.

(3) For i = 1,. . . ,|L|, let m the i-th modulus of the list L. If m is not a conductor
of (m, Pm) or hm odd, go to step 3.

(4) Compute the list C of all subgroups C of index 2 of Clm.

(5) For j = 1,. . . ,|C|, let C be the j-th element of C. Check if m is a conductor
of (m, C), otherwise go to step 5.

(6) Compute the de�ning polynomial of the extension K2/K corresponding to
the equivalence class of (m, C).
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B.1.2 Cubic extensions

The algorithm listing cyclic cubic extensions is analogous to Algorithm 5 and it
is given in [12, Algorithm 9.2.5], so we will omit it here.

So let us consider only the noncyclic case.
Let K be a number �eld, L/K a noncyclic extension, N the Galois closure

of this extension (so Gal(N/K) is isomorphic to D3) and K2 the only quadratic
extension of K contained in N .

L2

||
||

||
||

L

K2

||
||

||
||

K

Theorem 9.2.6 ([12]) give us properties of this kind of extensions (more generally
for dihedral extensions L2/K with Galois group Dn).

In particular, when n = 3, we know that the conductor of the extension
L2/K2 is of the form aOK2 , for some ideal a of OK and that d(L/K) =
d(K2/K)a2,. The following algorithm lists all cubic noncyclic extensions of
K of bounded relative discriminant:

Algorithm 6. [List of relative noncyclic cubic extensions]
Given a number �eld K, and a bound B, this algorithm outputs a list of all

relative extensions L/K of degree 3, modulo isomorphism, such that Nd(L/K) ≤
B.

(1) Compute the list L0 of all the ideals a of K of norm ≤ B1/2 which are
conductors at 3, except that we allow vp(a) = 1 for p | 3.

(2) Compute the list Q of quadratic extensions K2/K up to K-isomorphism such
that N (d(K2/K)) ≤ B.

(3) For i = 1, . . . , |Q| let K2 be the i-th element of Q, let d = d(K2/K), and
let τ be the generator of Gal(K2/K).

(4) Let L1 be the sublist of the ideals a of L0 such that

N (a) ≤
(

B

Nd(K2/K)

)1/2

,

and such that if p - 3 and p | a then p - d; if p | 3 and vp(a) = 1 , then p | d;
and �nally if p | 3, e(p/3) is even and vp(a) = b3e(p/3)/2c + 1, then p - d.
Compute the list L2 of ideals m0 of K2 of the form m0 = aZK2 , with a ∈ L1.

(5) For j = 1, . . . , |L2| let m be the modulus whose �nite part m0 is the j-th
element of L2 and with m∞ = ∅. Check whether m is the conductor of
(m, Pm). If not go to step 5.
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(6) Compute the list C of all the congruence subgroups C of Im(K2) of index 3.

(7) For c = 1, . . . , |C| let C be the c-th congruence subgroup of C, check if m is
the conductor of (m, C). If not or if τ(C) 6= C, go to step 7.

(8) Test if τ(I) = I−1 in Clm(K2)/C i.e. test if NK2/KI = 1 in Clm(K2)/C.

(9) (m, C) is the conductor of a suitable cyclic cubic extension of K2. Using
Kummer theory, compute a de�ning polynomial P (X) ∈ K2[X] for the cubic
extension L2/K2 corresponding to (m, C).

(10) Let Pc = P τ (X) be the polynomial obtained by applying τ to all the coef-
�cients of P . Set Q(X) = RY (Pc(Y ), P (X − Y )), where RY denotes the
resultant in the variable Y . Then Q(X) ∈ K[X]. Factor Q(X) in K[X],
output one of the irreducible factors of Q(X) of degree 3 in K[X] (it will
have one) as a de�ning polynomial for L/K, and go to step 7.

Remarks. We took the previous algorithms from [12], �xing some small mis-
takes in the algorithm for noncyclic cubic extensions

(1) In step 4 the conditions on p | a are not clear: [12] says �...and �nally if
p | 3 and vp(a) = 3e(p/3)/2 + 1, then p - d� in fact, the equality implies
that e(p/3) is even, so when it is odd we can just skip the test. Moreover,
when p - 3, there should be a condition saying that vp(a) = 1, but in fact
this was already tested on step 1.

(2) In step 5 �terminate the algorithm� must be replaced by �go to step 3�

(3) In steps 7−8. In fact for each C ∈ C it is not su�cient to test wether m is
the conductor of (m, C), but we need to check also if τ(C) = C. Thanks to
[12, Theorem 9.2.6]it is su�cient to test the condition τ(I) = I−1, where

Clm(K2)/C =
〈
I
〉
.

(4) In the original algorithm in [12], to get the lists L,L0, and so on, you �rst
construct the list of all ideals up to some bound B and then select the
ones satisfying the given conditions (by factoring them). It is much more
straightforward to construct directly those ideals, and it make a big gain
of time and space in the algorithm. The �rst thing to remark is that for all
prime ideals p in ZK , apart from the ones above 2 and 3 the only possible
exponent is 1. So we can directly make the list of all these ideals (just
using a loop on prime ideals over Z, factoring them over ZK and making
all the possible products), then we multiply for the allowed powers of p2

and p3 (which depend on the step of the algorithm we are : quadratic
extensions, cubic extensions,...).

(5) We can also avoid to factor the ideals of L0 to test the condition in step (4)
of Algorithm 6. Indeed, we can de�ne a3 = lcm(a, 32) and a0 = a/a0. Then
we just need to test if lcm(a0, d) = 1 and if a3 = p3 then lcm(d, p3) 6= 1.
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Appendix C

C.1 Approximation errors in Algorithm 2

Proposition C.1.1. Let F (x) = ax3 + bx2 + cx+ d be our cubic polynomial.
If we compute its roots α1, α2, α3 with relative precision ε, that is

|αi − α̂i| < ε|αi|, (C.1)

for i = 1, 2, 3, and we suppose that we are working with exact arithmetic (i.e.
computing operations does not add any error term to our expressions) then we
have

max
{
|P − P̂ |, |Q− Q̂|, |R− R̂|

}
≤ 1971

2
·X · ε, (C.2)

where P̂ , Q̂ and R̂ are the values computed for P,Q,R respectively, using the
approximations α̂i instead of the αi.

Proof. Let us recall that t2i = |a|2|αj − αk|2, with {i, j, k} = {1, 2, 3}.
Now

||αj − αk| − |α̂j − α̂k|| ≤ |αj − α̂j |+ |αk − α̂k| ≤ ε(|αj |+ |αk|)),

so
|ti − t̂i| ≤ ε|a|(|αj |+ |αk|). (C.3)

Moreover

|t2i − t̂2i | ≤ |ti + t̂i||ti − t̂i| ≤ (2ti + ε|a|(|αj |+ |αk|)) · ε|a|(|αj |+ |αk|)

and ti ≤ |a| (|αj |+ |αk|) so we get

|t2i − t̂2i | ≤ ε|a|2(2 + ε)(|αj |+ |αk|)2. (C.4)

Now we develop P

|P − P̂ | ≤ |t21 − t̂21|+ |t22 − t̂22|+ |t23 − t̂23|
≤ ε|a|2(2 + ε)

(
(|α2|+ |α3|)2 + (|α1|+ |α3|)2 + (|α1|+ |α2|)2

)
≤ 2 · ε|a|2(2 + ε) (|α1|+ |α2|+ |α3|)2

.

Now we can bound |αi|

|αi| ≤ γ1/2X
1/4

|a|
,

77



and in particular when K = Q(i) we have

|αi| ≤
1
|a|

(
27X

2

)1/4

.

Let us call
cα = γ1/2X1/4,

(remark that cα > 1 for every X > 1) so that

|αi| ≤
cα
|a|
. (C.5)

So

(|α1|+ |α2|+ |α3|)2 ≤ 9
|a|2

c2α.

And �nally

|P − P̂ | ≤ 2 · ε|a|2(2 + ε) · 9
|a|2
· c2α

so
|P − P̂ | ≤ 18 · ε · (2 + ε) · c2α (C.6)

Let us call
cP = 18 · ε · (2 + ε) · c2α (C.7)

for simplicity.
When we look at Q we have

|Q− Q̂| ≤ |α1t
2
1 − α̂1t̂

2
1|+ |α2t

2
2 − α̂2t̂

2
2|+ |α3t

2
3 − α̂3t̂

2
3|

Now for each triple i, j, k with {i, j, k} = {1, 2, 3}, we have

|αit2i − α̂it̂2i | ≤ |αit2i − (αi ± εαi)t̂2i |
≤ |αit2i − αit̂2i |+ |εαit̂2i |

≤ |αi||t2i − t̂2i |+ ε|αi|
(
t2i + ε |a|2 (2 + ε)(|αj |+ |αk|)2

)
So

|Q− Q̂| ≤ cα
|a|
cP + ε

cα
|a|

(1 + (2 + ε)ε) |a|2 · 2(|α̂1|+ |α̂2|+ |α̂3|)2

≤ cα
|a|
cP + ε

cα
|a|

(1 + (2 + ε)ε) · 18c2α.

Finally for R we have

|R− R̂| ≤
∣∣|α1|2t21 − |α̂1|2t̂21

∣∣+
∣∣|α2|2t22 − |α̂2|2t̂22

∣∣+
∣∣|α3|2t23 − |α̂3|2t̂23

∣∣ .
Now, since |α̂i|2 ≤ |αi|2 + 2 · ε|αi|2 + ε2|αi|2,∣∣|αi|2t2i − |α̂i|2t̂2i ∣∣ ≤ ∣∣|αi|2t2i − (|αi|2 ± (2 · ε+ ε2)|αi|2

)
t̂2i
∣∣

≤ |αi|2|t2i − t̂2i |+ (2 · ε+ ε2)|αi|2|t̂i|2

≤ |αi|2|t2i − t̂2i |+ (2 · ε+ ε2)|αi|2(t2i + ε(2 + ε) |a|2 (|αj |+ |αk|)2).
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So

|R− R̂| ≤ c2α
|a|2

cP + (2 · ε+ ε2)
c2α
|a|2
|a|2 (1 + ε(2 + ε))2(|α1|+ |α2|+ |α2|)2

≤ c2α
|a|2

cP + 18 · (2 · ε+ ε2)(1 + ε(2 + ε)) · c
4
α

|a|4
.

Putting rougher bounds we get

|P − P̂ | ≤ 37c2α · ε
|Q− Q̂| ≤ 55c3α · ε
|R− R̂| ≤ 73c4α · ε,

and we can conclude.

Corollary C.1.2. Let us suppose K = Q(i), X ≤ 105, ε = 10−38 and that
we are working with exact arithmetic, then the error that appears when we test
border conditions is bounded by ε ≤ 2 · 10−30.

Up to now, we assumed exact arithmetic, and the error comes only from the
αi which are approximate values. In reality, we have also to take into account
the error coming from �oating point computations. For all basic operations +,
×, −, /, let us note ⊕ ⊗, 	, � the corresponding machine operation. For all
∗ ∈ {+,−,×, /}, we suppose that

|(a ∗ b)− (a~ b)| ≤ ε|a ∗ b|

for any a and b in R.
By induction we obtain the following proposition

Proposition C.1.3. Let x = (x1, . . . , xk) ∈ Ck, and de�ne

Sk = x1 ⊕ x2 ⊕ · · · ⊕ xk,

Pk = x1 ⊗ x2 ⊗ · · · ⊗ xk.

Then ∣∣∣∣∣Sk −
k∑
i=1

xi

∣∣∣∣∣ ≤
(

(1 + ε)k − (1 + ε)
ε

− (k − 1)
)
‖x‖∞ (C.8)

and ∣∣∣∣∣Pk −
k∏
i=1

xk

∣∣∣∣∣ ≤ ((1 + ε)k−1 − 1)
)
‖x‖k∞ . (C.9)

Corollary C.1.4. ∣∣∣∣∣Sk −
k∑
i=1

xi

∣∣∣∣∣ ≤
(
k2

2

)
ε ‖x‖∞ (C.10)

∣∣∣∣∣Pk −
k∏
i=1

xk

∣∣∣∣∣ ≤ kε ‖x‖k∞ (C.11)
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Proof. Apply Newton formula to (1 + ε)k and (1 + ε)k−1 in (C.8) and (C.9)
respectively. For (C.8) we get

Sk ≤

((
k

2

)
ε+

k∑
i=3

(
k

i

)
εi−1

)
.

It is su�cient to choose ε su�ciently small (for example ε ≤ 1
k4 ) to bound the

sum by ε, so that

Sk ≤
((

k

2

)
+ 1
)
ε ‖x‖∞ ≤

k2

2
ε ‖x‖∞ ,

for all k ≥ 2. The proof of (C.11) is similar but easier so it is left to the reader.

Proposition C.1.5. If we drop o� the hypothesis that we are working with
exact arithmetic and consider also the error given by machine operations, we
get

max
{
|P − P̂ ′|, |Q− Q̂′|, |R− R̂′|

}
≤ 179c4α · ε. (C.12)

Proof. When we look at the operations used to compute P , Q and R, the
most complicated one is R which is computed in 14 simple operations on the
αi, and it involves the product of only 4 of these αi. Using (C.10) and (C.11),
we see that

|R′ −R| ≤
((

15
2

)
+ 1
)
c4α

|a|4
ε ≤ 106c4αε

So putting together the two kinds of error we get

|R− R̂′| ≤ 73 · c4α · ε+ 106c4α · ε = 179 · c4α · ε.

Analogous (smaller) bounds hold for |P − P̂ ′| and |Q− Q̂′|.

Corollary C.1.6. If we suppose K = Q(i), X ≤ 105 and ε = 10−38, the error
term that we obtain testing the borders is bounded by 10−28.

C.1.1 Error when computing k

Let F = (a0, b0, c0, d0) be a Cremona-reduced binary cubic form, and let HF =
(P,Q,R) be the associated binary hermitian form. Finally let G = (a, b, c, d)
be the corresponding Julia-reduced binary cubic form. When we compute k =
k1 +ik2 =

⌊
Q
P

⌉
(we round separately imaginary part and real part) we only have

a problem when
⌊
Qi
P

⌉
= ki + 1

2 , for i = 1 or 2, where we set Q1 = Re(Q), Q2 =
Im(Q).

But to detect it with approximate values we need again to estimate the
possible error δ.

Let us suppose for example

Qi/P = ki + ω

where 0 ≤ ω ≤ 1, and
Q̂i/P̂ = ki + ω + δ.
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Proposition C.1.7. Let K = Q(i). The error δ for ki (with exact arithmetics)
is bounded by

|δ| ≤ 103 ·X3/4 · ε. (C.13)

Proof. We have∣∣∣(Qi − (ki + ω)P )−
(
Q̂i − (ki + ω) P̂

)∣∣∣ = δP̂ .

So we obtain
δ ≤ P̂ δ ≤ |Qi − Q̂i|+ (ki + ω)|P − P̂ |.

(since P > 1, and it is su�cient to take the error on P su�ciently small to get
P̂ < 1 too).

Now we need to bound k but since b0 = 3ak + b, we get

|k| ≤ |b|+ |b0|
3

.

Now we know that |b| ≤ 3 · cα and

|b0| ≤ max {Re(3a), Im(3a)} ≤ |3a| ≤ 3
(
α√
3

)3/4

X1/4,

with α = 1/tK so

ki ≤ |k| ≤
|b0|+ |b|

3
≤ cα +

(
α√
3

)3/4

X1/4.

In particular, when K = Q(i), with rough approximations we get

ki + ω ≤ 4X1/4

then
δ ≤ 55 · ε · c3α + 37 · ε · c2α · 4X1/4

In particular for K = Q(i)

δ ≤ 103 ·X3/4 · ε.

Corollary C.1.8. If we suppose K = Q(i), X ≤ 105, ε = 10−38 and exact
arithmetic we get

δ ≤ 10−30.

Proposition C.1.9. If we suppose machine operations, we have to add to the
previous error δ, an error δ′ ≤ (3τ + 2ε)(4X1/4 + 1), where τ = 106 · c4αε.

Proof. Recall that

max
{∣∣∣P̂ − P̂ ′∣∣∣ , ∣∣∣Q̂− Q̂′∣∣∣} ≤ 106 · c4αε,

and that we suppose that the error given by a single machine operation is

P̂ ′ � Q̂′i ≤ P̂ ′/Q̂′i · (1 + ε).

81



Now P̂ ′/Q̂′ ≤ P̂ (1+τ)

Q̂(1−τ)
≤ P̂

Q̂
(1 + 3τ) where τ = 106 · c4αε.

So P̂ ′ � Q̂′ ≤ P̂
Q̂

(1 + 3τ)(1 + ε) ≤ P̂
Q̂

(1 + 2ε+ 3τ), if we suppose |τ | ≤ 1/3 so∣∣∣P̂ ′ � Q̂′ − P̂ /Q̂∣∣∣ ≤ (3τ + 2ε)
∣∣∣P̂ /Q̂∣∣∣ (C.14)

≤ (3 · 106c4α · ε+ 2ε)(4X1/4 + 1) (C.15)

In particular when K = Q(i) we have δ′ ≤ (4295 · ε ·X)(4X1/4 + 1)

Corollary C.1.10. If we suppose X ≤ 105, ε = 10−38 and machine arithmetic
we get

δ ≤ 10−27.

C.1.2 Error when computing |d− x1||d− x2|
Let F = (a, b, c, d). Set A = −27a2, B = 18abc − 4b3, C = b2c2 − 4ac3. We
consider the polynomial Ax2 +Bx+ C; ∆ = B2 − 4AC is an exact value, so

|
√̂

∆−
√

∆| ≤ ε|
√

∆|.

Recall that x1 = −B+
√

∆
2A and x2 = −B−

√
∆

2A

Proposition C.1.11. We have that

||d− x1||d− x2| − |d− x̂1||d− x̂2|| ≤ 4 ·X · τ + τ2,

with τ = γK · εX3/4, and γK is constant depending only on the number �eld K.
In particular γQ(i) ≤ 104

Proof. For i = 1 or 2, we have

|xi − x̂i| =

∣∣∣∣∣
√

∆
2A
−
√̂

∆
2A

∣∣∣∣∣ ≤ |√∆−
√̂

∆| ≤ τ,

where τ = ε|
√

∆|. Hence,

||d− xi| − |d− x̂i|| ≤ |xi − x̂i| ≤ τ.

Now

||d− x1||d− x2| − |d− x̂1||d− x̂2|| ≤ |d− x2| ||d− x1| − |d− x̂1||+ |d− x̂1| ||d− x2| − |d− x̂2||
≤ |d− x2|τ + |d− x̂1|τ

≤ 2X
|A|
· τ + |d− x̂1|τ

≤ 4X
|A|

τ + τ2,

since |d − x̂i| ≤ |d− xi| + |x̂i − xi| ≤ 2X
|A| + τ . Now we need to bound ∆, but

looking at the polynomial expression for A, B and C, and applying the bounds
given in Theorem 2.2.3 we get

∆ ≤ γ2
K ·X3/2,
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for a constant γK depending only on the number �eld K; so
√

∆ ≤ γK ·X3/4,

then we can replace τ by the upper bound γK · ε · X3/4. In particular, when
K = Q(i) it is easy to see that γK ≤ 104

Corollary C.1.12. If we suppose K = Q(i), X ≤ 105, ε = 10−38 and exact
arithmetic we get

||d− x1||d− x2| − |d− x̂1||d− x̂2|| ≤ 10−24.

Proposition C.1.13. Let λ = 2Ad + B. The additional error δ given by
machine operations is

δ ≤ 3 · ε ·
(
|λ|+

√̂
∆
)2

where ε is the machine error for one simple operation.

Proof. Since A,B and C are exact numbers, we just need to take into account
the operations involving

√
∆. let us write

|d− x1| |d− x2| =
|2Ad− 2Ax1| |2Ad− 2Ax2|

4A2

=

∣∣∣λ−√∆
∣∣∣ ∣∣∣λ+

√
∆
∣∣∣

4A2

Now ∣∣∣(λ	 √̂∆
)
−
(
λ−
√̂

∆
)∣∣∣ ≤ ε(|λ|+ √̂∆

)
And ∣∣∣(λ⊕ √̂∆

)
−
(
λ+
√̂

∆
)∣∣∣ ≤ ε(|λ|+ √̂∆

)
So

(λ	
√̂

∆)× (λ⊕
√̂

∆) ≤ (1 + ε)2(|λ|+
√̂

∆)2

∣∣∣(λ	 √̂∆)⊗ (λ⊕
√̂

∆)− (λ−
√̂

∆)× (λ+
√̂

∆)
∣∣∣

≤ ε(1 + ε)2(|λ|+
√̂

∆)2 + 2ε(|λ|+
√̂

∆) + ε2(|λ|+
√̂

∆) =: err

Finally the machine error obtained after the division by 4A2 is

||d	 x̂′1| ⊗ |d	 x̂′2| − |d− x̂1| |d− x̂2||

≤ (1 + ε)err + (|λ|+
√̂

∆)2ε

4 · 27

≤ 2ε(|λ|+
√̂

∆)2 + ε2 · f(λ,∆, ε),

and it is easy to see that for su�ciently small ε, we can bound

ε2 · f(λ,∆, ε) ≤ ε
(∣∣∣λ+

√̂
∆
∣∣∣)2

,

so we conclude.
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Corollary C.1.14. If we suppose K = Q(i), X ≤ 105, ε = 10−38 and machine
operations, we get

δ ≤ 10−22.

Proof. Recall that √̂
∆ ≤ γK · (1 + ε) ·X3/4.

In the same way we can prove

|λ| ≤ δKX3/4,

for a constant δK depending only on K. In particular if K = Q(i) we obtain

√̂
∆ ≤ 104X3/4

and
|λ| ≤ 3000X3/4.

So
|λ|+

√̂
∆ ≤ 13000X3/4,

and we conclude.
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Appendix D

This appendix gives the polynomials used in �2.5.1 to check rigorously the
boundary conditions in the reduction inequalities.

Section D.1 gives the Maple code used to compute the polynomial gP asso-
ciated to the binary cubic form

F = ax3 + bx2y + cxy2 + dy3 = a(x− α1y)(x− α2y)(x− α3y).

It belongs to K[X] and vanishes at

|α1|2 + |α2|2 + |α3|2 .

Similarly gR vanishes at

(|α1|2|α2|2 + |α1|2|α3|2 + |α2|2|α3|2),

gQ vanishes at
z = α1α2α3 + α1α2α3 + α1α2α3.

Finally, gReQ, gImQ vanish at 2Re(z) and 2Im(z) respectively.
The resulting expressions are polynomials in Z[e1, e2, e3, f1, f2, f3, X], where

the ei stand for the elementary symmetric functions:

e1 = α1 + α2 + α3 = −b/a,
e2 = α1α2 + α1α3 + α2α3 = c/a,

e3 = α1α2α3 = −d/a.

The fi stand for their conjugates.

These polynomials are used by the GP functions in �D.2, with numeric
arguments for a, b, c, d ∈ OK , yielding univariate polynomials in K[X].
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D.1 Maple code

#######################################################################

# ai corresponds to \alpha_i, bi to \overline{\alpha_i}

Sa := a1+a2+a3=e1, a1*a2+a1*a3+a2*a3=e2, a1*a2*a3=e3:

Sb := b1+b2+b3=f1, b1*b2+b1*b3+b2*b3=f2, b1*b2*b3=f3:

# sigma = [123, 132, 213, 231, 312, 321]

sigma[1]:= e -> e:

sigma[2]:= e -> subs({ b2=b3, b3=b2}, e):

sigma[3]:= e -> subs({b1=b2, b2=b1 }, e):

sigma[4]:= e -> subs({b1=b2, b2=b3, b3=b1}, e):

sigma[5]:= e -> subs({b1=b3, b2=b1, b3=b2}, e):

sigma[6]:= e -> subs({b1=b3, b3=b1}, e):

# expand \prod (X-\sigma_i(s))

# then substitute the elementary symmetric functions

POL := proc (s) local P, Q;

P := mul(X-sigma[i](s), i=1..6);

Q := simplify(P, {Sa,Sb}, [a1,a2,a3,b1,b2,b3]);

sort(collect(Q,X), X);

end:

#######################################################################

gP := POL(a1*b1 + a2*b2 + a3*b3);

gR := POL(a1*a2*b1*b2 + a1*a3*b1*b3 + a2*a3*b2*b3);

gQ := POL(b1*a2*a3 + a1*b2*a3 + a1*a2*b3);

gReQ := POL(b1*a2*a3 + a1*b2*b3 + a1*b2*a3 + b1*a2*b3 + a1*a2*b3 + b1*b2*a3);

gImQ := POL(-a1*b2*b3 + b1*a2*a3 - b1*a2*b3 + a1*b2*a3 - b1*b2*a3 + a1*a2*b3);

D.2 GP code

gP(a,b,c,d)=
{ my(e1 = -b/a, e2 = c/a, e3 = -d/a);

my(f1 = conj(e1), f2 = conj(e2), f3 = conj(e3));

X^6
-2*f1*e1*X^5
+(f1^2*e1^2+2*f2*e1^2+2*f1^2*e2-6*f2*e2)*X^4+
(-2*f1^3*e3-27*f3*e3+9*f3*e2*e1-2*f3*e1^3-2*f1*f2*e1^3+9*f2*f1*e3+ 5*f1*f2*e2*e1-2*f1^3*e1*e2)*X^3+
(-6*f2^2*e2*e1^2-9*f3*f1*e2*e1^2+f1^4*e2^2-6*f1^2*f2*e2^2+2*f1^4*e3*e1+

27*f3*f1*e3*e1+f2^2*e1^4+2*f3*f1*e1^4+9*f2^2*e2^2+3*f1^2*f2*e1^2*e2
-9*f1^2*f2*e3*e1)*X^2+

(15*f1^3*f2*e3*e2-f2^2*f1*e1^3*e2-2*f1^5*e2*e3+81*f3*f2*e3*e2+3*f2^2*f1*e2^2*e1
-f1^3*f2*e2^2*e1-27*f3*f2*e2^2*e1+9*f3*f1^2*e2^2*e1-27*f2^2*f1*e3*e2-27*f3*f1^2*e3*e2
-2*f3*f2*e1^5-2*f3*f1^2*e1^3*e2+9*f2^2*f1*e3*e1^2-27*f3*f2*e3*e1^2+15*f3*f2*e2*e1^3
-2*f1^3*f2*e3*e1^2)*X+

f1^6*e3^2+f2^2*f1^2*e1^3*e3+f3*f2*f1*e1^4*e2-27*f2^3*e3^2-27*f3^2*e2^3+f1^4*f2*e1*e2*e3
+27*f2^2*f1^2*e3^2-4*f2^3*e2^3-9*f2*f1*f3*e2^2*e1^2+27*f3^2*e2^2*e1^2-4*f2^3*e3*e1^3
+9*f3*f2*f1*e3*e1^3-2*f3*f1^3*e3*e1^3+f3^2*e1^6+f1^3*f3*e2^2*e1^2+18*f2*f1*f3*e2^3
-9*f3^2*e2*e1^4+18*f2^3*e3*e2*e1-9*f1^4*f2*e3^2-27*f3*f2*f1*e3*e2*e1+9*f3*f1^3*e3*e2*e1
-9*f2^2*f1^2*e3*e2*e1+f2^2*f1^2*e2^3+f2^3*e2^2*e1^2-4*f1^3*f3*e2^3;

};

gR(a,b,c,d)=
{ my(e1 = -b/a, e2 = c/a, e3 = -d/a);

my(f1 = conj(e1), f2 = conj(e2), f3 = conj(e3));
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X^6-2*f2*e2*X^5+(2*f3*f1*e2^2-6*f3*f1*e3*e1+2*f2^2*e3*e1+f2^2*e2^2)*X^4+
(9*f3*f2*f1*e3^2-2*f3^2*e2^3-2*f2^3*e3^2-27*f3^2*e3^2+9*f3^2*e3*e2*e1+5*f3*f2*f1*e3*e2*e1
-2*f2*f1*f3*e2^3-2*f2^3*e3*e2*e1)*X^3+(27*f3^2*f2*e3^2*e2-9*f3^2*f2*e3*e2^2*e1
+9*e3^2*f3^2*f1^2*e1^2+f3^2*f1^2*e2^4-6*f3^2*f1^2*e3*e2^2*e1+2*f3^2*f2*e2^4+2*e3^2*f2^4*e2
-6*f2^2*f1*f3*e3^2*e1^2-9*e3^2*f3*f2^2*f1*e2+f2^4*e1^2*e3^2+3*f3*f2^2*f1*e2^2*e1*e3)*X^2+
(9*f3^2*f2^2*e2*e3^2*e1^2-2*f2^5*e3^3*e1-f3^2*f2*f1^2*e2^3*e1*e3-2*f3^3*f1*e2^5
+3*f3^2*f1^2*f2*e2*e3^2*e1^2+9*e3^2*f3^2*f2*f1^2*e2^2-f2^3*f1*f3*e3^2*e2*e1^2
-27*f3^3*f1*e3^2*e2*e1^2+15*f3^3*f1*e3*e2^3*e1-2*f3^2*f2^2*e2^3*e1*e3
-27*f3^2*f1^2*f2*e3^3*e1+81*f3^3*f1*e3^3*e1+15*f3*f1*f2^3*e3^3*e1-27*f3^3*f1*e3^2*e2^2
-27*f3^2*f2^2*e3^3*e1-2*e3^2*f3*f2^3*f1*e2^2)*X+f2^6*e3^4-27*f3^3*f1^3*e3^4
+f3^3*e1^2*f1^3*e3^2*e2^2+f3^3*f2*f1*e2^4*e1*e3-4*e3^2*f3^3*f1^3*e2^3
+27*f3^2*f2^2*f1^2*e3^4-4*f3^3*f1^3*e3^3*e1^3-27*f3^4*e3^3*e1^3
+18*f3^3*f1*f2*e3^3*e1^3+f3^4*e2^6+9*f3^2*f2^3*e3^3*e2*e1
+18*f3^3*f1^3*e3^3*e2*e1-9*f3^4*e3*e2^4*e1+f3^2*f2^2*f1^2*e3^3*e1^3
-9*f3^2*f2^2*f1^2*e3^3*e2*e1+f3^2*e3^2*f2^3*e2^2*e1^2
-2*e3^2*f3^2*f2^3*e2^3-9*f3*f2^4*f1*e3^4-4*f3^2*f2^3*e3^3*e1^3
+e3^2*f3^2*f2^2*f1^2*e2^3+9*e3^2*f3^3*f2*f1*e2^3+f3*f2^4*f1*e3^3*e2*e1
-9*f3^3*e3^2*f1*f2*e2^2*e1^2-27*f3^3*f1*f2*e3^3*e2*e1+27*f3^4*e3^2*e2^2*e1^2;
};

gQ(a,b,c,d)=
{ my(e1 = -b/a, e2 = c/a, e3 = -d/a);
my(f1 = conj(e1), f2 = conj(e2), f3 = conj(e3));

X^6-2*f1*e2*X^5+(f1^2*e2^2+2*f1^2*e3*e1+2*f2*e2^2-6*f2*e3*e1)*X^4
+(9*f2*f1*e3^2-2*f1^3*e3^2-2*f1*f2*e2^3+9*f3*e3*e2*e1-27*f3*e3^2-2*f3*e2^3
+5*f2*f1*e3*e2*e1-2*f1^3*e1*e2*e3)*X^3+(-6*f1^2*f2*e3^2*e1^2+2*f3*f1*e2^4
+9*e3^2*f2^2*e1^2+3*f1^2*f2*e2^2*e1*e3+f2^2*e2^4+27*f3*f1*e3^2*e2+f1^4*e3^2*e1^2
-6*f2^2*e3*e2^2*e1+2*e3^2*f1^4*e2-9*f3*f1*e3*e2^2*e1-9*e3^2*f2*f1^2*e2)*X^2
+(9*f3*f1^2*e3^2*e2*e1^2-2*e3^2*f1^3*f2*e2^2+15*f1^3*f2*e3^3*e1+15*f3*f2*e3*e2^3*e1
-f1*f2^2*e2^3*e1*e3-27*f2^2*f1*e3^3*e1-27*f3*f1^2*e3^3*e1-27*f3*f2*e3^2*e2*e1^2
-2*f3*f1^2*e2^3*e1*e3-f1^3*f2*e3^2*e2*e1^2-2*f1^5*e3^3*e1+9*e3^2*f2^2*f1*e2^2
-27*f3*f2*e3^2*e2^2+81*f3*f2*e3^3*e1+3*f2^2*f1*e3^2*e2*e1^2-2*f2*f3*e2^5)*X
-2*e3^2*f1^3*f3*e2^3+9*f1^3*f3*e3^3*e2*e1-9*e3^2*f3*f2*f1*e2^2*e1^2+f1^4*f2*e3^3*e2*e1
-27*f3*f2*f1*e3^3*e2*e1-9*f2^2*f1^2*e3^3*e2*e1+e3^2*f2^3*e2^2*e1^2+18*f3*f2*f1*e3^3*e1^3
+f2^2*f1^2*e3^3*e1^3+f1^6*e3^4-4*f2^3*e3^3*e1^3+27*f2^2*f1^2*e3^4-9*f1^4*f2*e3^4
+e3^2*f1^3*f3*e2^2*e1^2+18*f2^3*e3^3*e2*e1+f2*f1*f3*e2^4*e1*e3+27*f3^2*e3^2*e2^2*e1^2
-9*f3^2*e3*e2^4*e1+9*e3^2*f3*f2*f1*e2^3+f3^2*e2^6+e3^2*f2^2*f1^2*e2^3
-4*f1^3*f3*e3^3*e1^3-27*f3^2*e3^3*e1^3-4*e3^2*f2^3*e2^3-27*f2^3*e3^4;
};

gImQ(a,b,c,d)=
{ my(e1 = -b/a, e2 = c/a, e3 = -d/a);
my(f1 = conj(e1), f2 = conj(e2), f3 = conj(e3));

X^6
+ (-2*f1*e2+2*f2*e1)*X^5
+ (-3*e3*f1*f2+2*e2^2*f2+2*f2^2*e2-3*e1*e2*f3+e2^2*f1^2+27*e3*f3-6*e3*f2*e1 -
6*f3*f1*e2+2*e1^2*f3*f1-3*e1*e2*f1*f2+2*e3*f1^2*e1+e1^2*f2^2)*X^4+(-2*e3^2*f1^3 -
27*e3^2*f3-2*e2^3*f3-4*e3*e1^2*f2^2+4*e2^2*f1^2*f3-2*e2^2*f1*f2^2+6*e2^2*f2*f3 +
2*e1*e2^2*f2^2-6*e3*f2^2*e2-2*e2^3*f1*f2+9*e3^2*f1*f2+9*e2*e3*f3*e1+2*e3*e1^2*f2*f1^2 +
6*e3*f1^2*f3*e1-5*e3*f1*f2^2*e1-6*e3*e1^2*f1*f3+27*e3*f2*f3*e1-e1^2*f1*f2^2*e2 -
2*e1^2*f1^2*f3*e2-5*e1^2*f2*f3*e2+5*e3*f2*f1^2*e2-27*e3*f1*f3*e2+5*e1*e2^2*f1*f3 +
e1*e2^2*f2*f1^2-2*e1*e2*f1^3*e3+5*e2*e3*f1*f2*e1+2*e1^3*f3^2+2*e1^3*f2*f1*f3 -
5*e2*e1*f2*f1*f3+2*e3*f2^3+27*e3*f3^2+2*e2*e1*f2^3-9*e2*e1*f3^2-9*e3*f2*f1*f3)*X^3

+ (e2^4*f2^2-2*e1^3*e3*f2^3+9*e3^2*f1^2*f2^2+6*e1*e2*e3*f2^3+e1^3*e3*f1^2*f2^2 -
72*e1*e2*e3*f1*f2*f3+3*e1*e2*e3*f1^2*f2^2+6*e1*e2*e3*f1^3*f3+6*e1^3*e3*f1*f2*f3 -
2*e1^3*e3*f1^3*f3+9*e1^2*e2^2*f3^2-2*e2^3*f1^3*f3+e2^3*f1^2*f2^2+e1^2*e2^2*f2^3 -
27*e3^2*f2^3-27*e2^3*f3^2-2*e2^3*f2^3+e1^2*e2^2*f1^3*f3+6*e2^3*f1*f2*f3 +
3*e1^2*e2^2*f1*f2*f3+9*e3^2*e1^2*f2^2+2*e2^4*f3*f1+e3^2*e1^2*f1^4+2*e2*e3^2*f1^4 -
6*e2^2*e3*f2^2*e1+27*e3^2*f3*f1^2*e1+18*e3^2*f2^2*f1*e1-108*e3^2*f2*f3*e1-e2^3*e1*f2^2*f1 -
2*e2^3*e1*f3*f1^2-5*e2^3*e1*f2*f3+27*e2^2*e3*f2*f3+3*e2^2*e3*f2^2*f1+27*e3^2*f3*f1*e2 -
9*e2*e3^2*f2*f1^2-5*e3^2*e1*f2*f1^3-6*e3^2*e1^2*f2*f1^2-2*e2^2*f2*f1^3*e3-9*e2^2*e3*f3*f1*
e1+18*e2*e3*e1^2*f2*f3+3*e2*e3*e1^2*f3*f1^2-e2*e1^2*f2*f1^3*e3+3*e2^2*e1*f2*f1^2*e3 -
27*e3*e1^3*f3^2+2*e1*e3*f2^4-27*e3^2*f1^3*f3+81*e3^2*f2*f1*f3+3*e3*e1^2*f2*f1^2*f3 +
27*e1*e3*f2*f3^2+81*e1*e2*e3*f3^2-2*e3*e1^2*f1*f2^3+27*e1^2*e3*f1*f3^2+27*e3*e2*f3*f2^2 -
5*e3*e2*f1*f2^3-9*e1*e3*f2^2*f1*f3+18*e3*e2*f2*f1^2*f3-108*e2*e3*f1*f3^2+9*e2^2*f1^2*f3^2 +
18*e1*e2^2*f1*f3^2-9*e2*e1^2*f2*f3^2-6*e2*e1^2*f1^2*f3^2-5*e2*e1^3*f1*f3^2+2*e1^4*f2*f3^2 +
e1^4*f1^2*f3^2+3*e2^2*e1*f3*f2^2-e2^2*e1*f1*f2^3-2*e2*e1^3*f3*f2^2-6*e2^2*f2^2*f1*f3 +
e2^2*f2^4+3*e2*e1^2*f2^2*f1*f3-e2*e1^3*f2*f1^2*f3)*X^2

+ (- 33*e2*e3^2*e1*f1^3*f3-6*e2*e1*e3^2*f1^2*f2^2+3*e2*e3*e1^3*f3*f2^2+18*e2*e3*e1^3*f1*f3^2 -
2*e2^5*f2*f3-6*e3^2*e1*f2^4-2*e1*e3^3*f1^5+2*e1^5*f1*f3^3+81*e3^3*f2*f3*e1 -
27*e2^2*e3^2*f2*f3+9*e3^2*e2^2*f2^2*f1-2*e3^2*e2^2*f2*f1^3-27*e1*e3^3*f1^2*f3 -
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27*e1*e3^3*f2^2*f1+15*e1*e3^3*f2*f1^3+15*e3*e2^3*f2*f3*e1-27*e2*e1^2*e3^2*f2*f3 -
e1*e2^3*f2^2*f1*e3+9*e2*e3^2*e1^2*f1^2*f3+3*e2*e3^2*e1^2*f2^2*f1-e2*e3^2*e1^2*f2*f1^3 -
2*e1*e2^3*f1^2*f3*e3+e2^2*e1^2*f2^2*f1^2*e3+54*e3^3*f2^3-54*e2^3*f3^3-33*e3*e2^3*f2*f1*f3 -
2*e3*e1*e2^2*f1^4*f3-e3*e2^2*e1*f1^3*f2^2-3*e2*e1^4*f3^3+2*e2*e3*f2^5-3*e3*e2^2*f2*f1^3*f3 +
6*e2^2*e1^2*f2*f1*f3^2-3*e2^2*e1*f2*f1^2*f3^2+27*e2*e3*f3^2*f2^2+2*e2*e3*e1^2*f2^4 +
27*e3*e2^3*f3^2+2*e3*e2^3*f2^3-5*e2*e3^2*f1^3*f2^2+6*e2*e3^2*f1^4*f3-81*e2*e3*f1*f3^3 -
18*e2*e3^2*e1*f2^3-81*e2*e3^2*e1*f3^2-4*e3*e2^2*f2^4+81*e2*e3^2*f1*f3^2-108*e2*e3^2*f3*f2^2

+18*e2*e3^2*f1*f2^3+3*e2^4*e1*f3^2+81*e2*e3*e1*f3^3+27*e2^2*e1^2*f3^3-15*e2*e1^3*f1*f3^3 +
2*e2*e1^3*f3^2*f2^2-15*e2*e3*f3*f1*f2^3+27*e2*e3*f2*f1^2*f3^2+8*e3*e2^3*f1^3*f3 -
27*e3*e2^2*e1^2*f3^2-27*e3*e2^2*f1^2*f3^2+2*e3*e2^2*f1^2*f2^3+108*e3*e2^2*f2*f3^2 -
9*e1*e2^2*f3^2*f2^2+18*e2*e1*e3*f1^3*f3^2+27*e1*e2^2*f1*f3^3-3*e2*e1*e3*f1*f2^4 +
33*e2*e1*e3*f3*f2^3-5*e1^2*e2^3*f1*f3^2+3*e2*e3^2*e1*f2*f1^4-18*e2^3*e1*f2*f3^2 -
3*e2^3*e1*f1^2*f3^2+5*e2^2*e1^3*f2*f3^2-3*e2*e1^4*f2*f1*f3^2+e2*e1^3*f2*f1^2*f3^2 +
2*e1^3*e3^2*f1^3*f3+3*e3^3*f1^4*f2+2*e1^3*e3^2*f2^3-27*e3^3*f1^2*f2^2-81*e3^3*f2*f1*f3 +
27*e3^3*f1^3*f3-27*e3^2*f3*f2^3-54*e3^2*f1^3*f3^2-3*e3^2*f1*f2^4+54*e3^2*e1^3*f3^2 +
27*e3*e1^2*f1*f3^3-81*e1*e3^2*f2*f3^2+108*e1*e3^2*f1^2*f3^2-27*e3*e1^3*f3^3-108*e1^2*
e3^2*f1*f3^2+4*e1^2*e3^2*f1^4*f3-9*e3*e1^2*f2*f1^2*f3^2-2*e3^2*e1^2*f1^3*f2^2 +
27*e3^2*e1^2*f3*f2^2+3*e3^2*e1^2*f1*f2^3+81*e3^2*f2*f1*f3^2+27*e3^2*f3*f1^2*f2^2 +
33*e3*e1^3*f2*f1*f3^2-18*e1*e3^2*f2*f1^3*f3-4*e3*e1^4*f1^2*f3^2-6*e3*e1^4*f2*f3^2 -
2*e3*e1^3*f1^3*f3^2-8*e3*e1^3*f3*f2^3+2*e3*e1^4*f2^2*f1*f3+2*e3*e1^2*f3*f1*f2^3 -
18*e3^2*e1^3*f2*f1*f3+5*e1*e3^2*f1^2*f2^3-6*e3*e2^2*e1^2*f2*f1*f3+15*e3*e2^2*e1*f2*f1^2*f3 -
15*e2*e3*e1^2*f2^2*f1*f3+135*e2*e3^2*e1*f2*f1*f3+2*e2^2*e1^3*f1^2*f3^2-e2^2*e1^2*f3*f1^2*f2^2

+e2^2*e1*f3*f1*f2^3+e2^2*e1^3*f2^2*f1*f3+e1*e2^3*f2*f1^3*f3+3*e2^4*e1*f2*f1*f3 -
2*e2^3*f1^3*f3^2+6*e2*e1*e3*f3*f1^2*f2^2-e2*e3*e1^3*f1*f2^3-135*e2*e1*e3*f2*f1*f3^2 -
2*e2^4*f2*f1^2*f3-2*e2^3*e1^2*f3*f2^2+e2*e3*e1^2*f1^2*f2^3+18*e2^3*f2*f1*f3^2+6*e2^4*f1*f3^2

+4*e2^4*f3*f2^2-2*e2^3*f3*f2^3-e2^3*e1^2*f2*f1^2*f3)*X
+ 27*e3*e2^3*f2*f3^2*e1+10*e2^2*e1^2*e3*f1^3*f3^2-27*e2*e3^2*f1^3*f3^2*e1 -

15*e2*e3*e1^3*f3^2*f2^2+27*e2*e3*e1^3*f1*f3^3-27*e2*e3*e1^2*f1^2*f3^3-27*e2*e3*f2*f1*f3^3*e1 +
15*e3*e1^2*e2^3*f1*f3^2+27*e2^2*e3*f3^2*f2^2*e1-27*e2^2*e3^2*f1*f3^2*e1-9*e2^2*e3*e1^3*f2*f3^2

-15*e3*e2^3*f1^2*f3^2*e1-6*e2^2*e3*e1^3*f1^2*f3^2+18*e2*e3*f1^3*f3^3*e1 -
27*e2*e1^3*e3^2*f1*f3^2-7*e2*e3*e1^3*f2*f1^2*f3^2+54*e2*e3^2*f2*f1*f3^2*e1 +
5*e2*e3*e1^4*f2*f1*f3^2-81*e3^3*f1^2*f3^2*e1+81*e3^2*f1^2*f3^3*e1-9*e2*e3*f3^2*f1^2*f2^2*e1 -
27*e2*e3*e1^2*f2*f3^3+3*e2*e3*e1^2*f2*f1^3*f3^2+27*e2*e1^2*e3^2*f2*f3^2+27*e2*e1^2*
e3^2*f1^2*f3^2+9*e2*e3*f3^2*f2^3*e1+9*e3^2*e1^4*f1^2*f3^2+81*e1^2*e3^3*f1*f3^2 -
12*e3^2*e1^3*f1^3*f3^2-2*e3*e1^3*f3^2*f2^3-81*e2^2*e3^2*f2*f3^2-27*e2^2*e3*f1^2*f3^3 +
81*e2^2*e3*f2*f3^3+27*e2^2*e3^2*f1^2*f3^2+18*e2*e3*e1^2*f1*f3^2*f2^2+9*e3*e1^3*f2*f1*f3^3 -
2*e3*e1^4*f1*f3^2*f2^2-27*e3^2*f1*f3^2*f2^2*e1-27*e3^2*f2*f1^3*f3^2*e1-27*e1^3*e3^2*f2*f1*f3^2

-6*e2^2*e3*f1^4*f3^2*e1+e1^4*f2*f1*f3^3*e2-e2^3*e1*f2*f1^3*f3^2+3*e2^3*e1^2*f2*f1^2*f3^2 +
3*e2^3*e1*f1*f3^2*f2^2+5*e1*e2^4*f2*f1*f3^2-2*e2^3*e1^3*f2*f1*f3^2-e2^2*e1^3*f1*f3^2*f2^2 +
e2^2*e1^2*f3^2*f2^3+e2^2*e1^2*f1^3*f3^3-2*e2^2*e1^3*f1^2*f3^3+15*e2^2*e1^3*f2*f3^3 +
2*e2^2*e1^4*f1*f3^3+e2^2*e1^4*f3^2*f2^2+8*e3*e2^3*f1^3*f3^2+18*e2^3*f2*f1*f3^3 +
9*e2^3*e1*f1^2*f3^3-9*e2^3*e1^2*f1*f3^3-6*e2^3*e1^2*f3^2*f2^2-27*e2^3*e1*f2*f3^3 -
4*e3*e1^3*f1^3*f3^3+2*e3*e1^5*f3^2*f2^2+6*e3*e1^4*f1^2*f3^3-6*e3*e1^5*f1*f3^3 -
81*e3^2*e1^2*f1*f3^3+9*e3^2*e1^2*f1^4*f3^2-27*e2^2*e3*f1*f3^2*f2^2+9*e2^2*e3*f2*f1^3*f3^2 +
27*e2^2*e3*e1*f1*f3^3+27*e3^2*f2*f1^2*f3^2*e2-6*e2^5*f2*f3^2+2*e2^5*f1^2*f3^2 -
4*e2^3*f1^3*f3^3-4*e2^3*f3^2*f2^3+e2^4*f1^4*f3^2+9*e1*e2^4*f3^3+9*e2^4*f3^2*f2^2 +
2*e3^2*e1^2*f2^5+e3^2*e1^4*f2^4-6*e2*e3^2*f2^5-4*e3^2*e2^3*f2^3+9*e3^2*e2^2*f2^4 -
9*e3^4*f1^4*f2-4*e1^3*e3^3*f2^3+27*e3^4*f1^2*f2^2-2*e3^3*f1^3*f2^3+27* e3^3*f3*f2^3 +
27*e3^3*f1^3*f3^2+9*e3^3*f1*f2^4-27*e3^2*f1^3*f3^3+e2^3*f3^2*f1^2*f2^2-81*e3^2*f3^2*f2^2*e2

+e3^2*e1^2*f1^2*f2^4-2*e3^2*e1^3*f1*f2^4-2*e3^2*e1*f1*f2^5-9*e2^2*e1^2*f2*f1*f3^3 -
27*e3*e2^3*f2*f1*f3^2+9*e2*e3^3*e1*f1^3*f3-9*e2*e1*e3^3*f1^2*f2^2+9*e2*e3^2*e1^3*f3*f2^2 -
6*e2^4*f2*f1^2*f3^2-2*e1*e2^5*f1*f3^2+e2^4*e1^2*f1^2*f3^2+2*e2^4*e1^2*f2*f3^2 -
2*e1*e2^4*f1^3*f3^2-2*e1^5*f2*f3^3*e2+e3^2*f2^6-27*e3^4*f2^3+e3^4*f1^6+e2^6*f3^2 -
27*e2^3*f3^4+e1^6*f3^4-27*e3^3*e1^3*f3^2+27*e3^2*e1^3*f3^3-9*e2*e1^4*f3^4 +
27*e2^2*e1^2*f3^4+27*e3*e2^3*f3^3-2*e2^3*e1^3*f3^3-9*e3*e2^4*f3^2*e1-54*e2^2*e3*e1^2*f3^3 +
27*e2^2*e3^2*e1^2*f3^2+9*e2*e3*e1^4*f3^3+2*e2*e3^2*f1^2*f2^4-6*e2*e3^2*e1^2*f2^4 +
15*e2*e3^3*f1^3*f2^2+18*e2*e3^3*e1*f2^3+81*e2*e3^3*f3*f2^2-27*e2*e3^3*f1*f2^3 +
2*e3^2*e2^2*f1^5*f3-2*e3^2*e2^3*f1^3*f3+e3^2*e2^2*e1^2*f2^3-6*e3^2*e2^2*f1^2*f2^3 -
2*e2*e3^3*f2*f1^5+e3^2*e2^2*f1^4*f2^2+e2^3*e3^2*f1^2*f2^2-4*e1^3*e3^3*f1^3*f3 +
e1^3*e3^3*f1^2*f2^2+27*e3^2*e1^2*f3^2*f2^2+27*e3^2*f3^2*f1^2*f2^2+6*e1^2*e3^3*f1^4*f3 -
2*e3^3*e1^2*f1^3*f2^2-27*e3^3*e1^2*f3*f2^2+9*e3^3*e1^2*f1*f2^3+e1^3*f3^2*f1^2*f2^2*e3 +
e3^2*e2^2*e1^2*f1^3*f3+3*e3^2*e2^2*e1*f1*f2^3+9*e3^2*e2^3*f2*f1*f3-2*e3^2*e1*e2^2*f1^4*f3 -
e3^2*e2^2*e1*f1^3*f2^2-27*e3^2*e2^2*e1*f3*f2^2-15*e3^2*e2^2*f2*f1^3*f3+27*e3^2*e2^2*f2^2*f1*f3

-9*e2*e3^2*f3*f1^3*f2^2+27*e2*e3^2*f3*f1*f2^3-27* e2*e3^3*f2*f1^2*f3-2*e2*e1*e3^2*f1^3*f2^3 +
5*e2*e1*e3^2*f1*f2^4-27*e2*e1*e3^2*f3*f2^3+e2*e3^3*e1*f2*f1^4-27*e3^3*e1^2*f2*f1^2*f3 +
27*e3^2*e1^2*f2*f1^2*f3^2+27*e1*e3^3*f2^2*f1*f3-54*e3^3*f3*f1^2*f2^2+9*e3^3*f3*f2*f1^4 +
8*e3^2*e1^3*f3*f2^3-9*e3^2*f3*f1*f2^4+2*e1*e3^3*f1^4*f2^2-6*e1*e3^3*f1^5*f3 -
9*e1*e3^3*f1^2*f2^3+6*e2^4*f3*f2^2*e3-12*e2^3*f3*f2^3*e3+6*e2^2*f3*f2^4*e3 +
27*e1*e3^3*f2*f1^3*f3+15*e3^2*e1*f3*f1^2*f2^3+10*e3^2*e1^3*f3*f1^2*f2^2-6*e3^2*e1^4*f2^2*f1*f3

-15*e3^2*e1^2*f3*f1*f2^3+18*e3^3*e1^3*f2*f1*f3-6*e3^2*e1^2*f3*f1^3*f2^2 -
9*e3^2*e2^2*e1^2*f2*f1*f3+18*e3^2*e2^2*e1*f2*f1^2*f3+3*e2*e3^2*e1^3*f2*f1^2*f3 -
27*e2*e3^3*e1*f2*f1*f3-7*e2*e3^2*e1^2*f2*f1^3*f3-6*e2^2*e1^2*f3*f1^2*f2^2*e3 +
3*e2^2*e1*f3*f1^3*f2^2*e3-7*e2^2*e1*f3*f1*f2^3*e3+3*e2^2*e1^3*f2^2*f1*f3*e3 +
5*e2*e1*e3^2*f3*f2*f1^4+3*e1*e2^3*f2*f1^3*f3*e3+e2^4*e1*f2*f1*f3*e3-7*e2^3*e1*f2^2*f1*f3*e3 +
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3*e2*e1^3*f3*f1*f2^3*e3-e2*e3^2*e1^3*f1*f2^3-2*e2^3*f3*f2*f1^4*e3+10*e2^3*f3*f1^2*f2^2*e3 -
2*e2^4*f2*f1^2*f3*e3-2*e2^3*e1^2*f3*f2^2*e3+3*e2*e3^2*e1^2*f1^2*f2^3-2*e2^2*f3*f1^2*f2^3*e3 +
10*e2^2*e1^2*f3*f2^3*e3-e2*e1^2*f3*f1^2*f2^3*e3-2*e2*e1^4*f3*f2^3*e3-2*e2*e1^2*f3*f2^4*e3 +
e1*e2*f3*f1*f2^4*e3-e2^3*e1^2*f2*f1^2*f3*e3

}

gReQ(a,b,c,d)=
{ my(e1 = -b/a, e2 = c/a, e3 = -d/a);
my(f1 = conj(e1), f2 = conj(e2), f3 = conj(e3));

X^6+(-2*f2*e1-2*f1*e2)*X^5+(f1^2*e2^2+2*f2*e2^2-6*f3*f1*e2+2*f2^2*e2+3*f1*f2*e2*e1
+3*f2*f1*e3-27*f3*e3+2*f1^2*e3*e1-6*f2*e3*e1+f2^2*e1^2+3*f3*e2*e1+2*f3*f1*e1^2)*X^4
+(-f1^2*f2*e2^2*e1+9*f3^2*e2*e1-2*f1^3*e1*e2*e3+9*f2*f1*e3^2+5*f2*f1*e3*e2*e1
+9*f3*e3*e2*e1-2*f2^3*e1*e2-5*f1^2*f2*e3*e2-2*f3^2*e1^3-2*f1*f2*e2^3-f2^2*f1*e1^2*e2
-5*f3*f2*e1^2*e2-5*f3*f1*e2^2*e1+27*f3*f1*e3*e2-2*f3*f1^2*e1^2*e2+5*f2*f1*f3*e2*e1
-2*f2^2*f1*e2^2+4*f2^2*e3*e1^2+27*f3*f2*e3*e1-5*f2^2*f1*e3*e1+6*f3*f1^2*e3*e1+6*f2^2*e3*e2
+9*f3*f2*f1*e3-2*f3*e2^3-27*f3*e3^2-2*f1^3*e3^2-2*f2^3*e3-27*f3^2*e3+6*f3*f1*e3*e1^2
-2*f1^2*f2*e3*e1^2-2*f2*f1*f3*e1^3+6*f3*f2*e2^2-2*f2^2*e2^2*e1+4*f3*f1^2*e2^2)*X^3
+(27*f3*f1*e3^2*e2+f1^4*e3^2*e1^2-6*f2^2*f1*f3*e2^2+2*f3*f1^2*e1*e2^3-27*f3*f2*e2^2*e3
-3*f2^2*f1*e2^2*e3-6*f1^2*f2*e3^2*e1^2+2*e3^2*f1^4*e2+3*f1^2*f2*e2^2*e1*e3
-9*e3^2*f2*f1^2*e2-6*f2^2*e3*e2^2*e1-18*f3*f2*f1^2*e3*e2+2*f2^4*e3*e1+f3^2*f1^2*e1^4
-18*f3*f2*e3*e2*e1^2+2*f2^3*f1*e3*e1^2-9*f3^2*f2*e2*e1^2-6*f3^2*f1^2*e2*e1^2
-27*f3^2*f1*e3*e1^2+108*f3^2*f1*e3*e2+81*f3*f2*f1*e3^2-9*f3*f1*e3*e2^2*e1-27*f2^3*e3^2
+9*e3^2*f2^2*e1^2+f2^2*f1^2*e1^3*e3+2*f3*f1*e2^4+81*f3^2*e3*e2*e1-2*f2^3*e2^3
-27*f3^2*e2^3+5*f2^3*f1*e3*e2+5*f3^2*f1*e1^3*e2+2*f2^2*f3*e1^3*e2+5*f3*f2*e1*e2^3
-3*f3*f1^2*e3*e1^2*e2-27*f2^2*f3*e3*e2+9*f2^2*f1^2*e3^2+f2^2*f1*e1*e2^3+f2^3*f1*e2^2*e1
-18*f3^2*f1*e2^2*e1-3*f2^2*f3*e2^2*e1-27*f3*f1^2*e3^2*e1-9*f2^2*f1*f3*e3*e1
+f1^3*f2*e1^2*e2*e3+108*f3*f2*e3^2*e1+27*f3^2*f2*e3*e1-18*f2^2*f1*e3^2*e1
+3*f2^2*f1*f3*e1^2*e2+f2*f1^2*f3*e1^3*e2-27*f1^3*f3*e3^2+2*f1^3*f2*e2^2*e3+f2^2*e2^4
+6*f3*f2*f1*e3*e1^3+3*f2*f1*f3*e2^2*e1^2+9*f3^2*e2^2*e1^2-2*f2^3*e3*e1^3-2*f3*f1^3*e3*e1^3
+f1^3*f3*e2^2*e1^2+6*f2*f1*f3*e2^3+6*f2^3*e3*e2*e1-72*f3*f2*f1*e3*e2*e1
+6*f3*f1^3*e3*e2*e1+3*f2^2*f1^2*e3*e2*e1+f2^2*f1^2*e2^3+f2^3*e2^2*e1^2-2*f1^3*f3*e2^3
+f2^4*e2^2-3*f3*f2*f1^2*e3*e1^2+5*f1^3*f2*e3^2*e1+9*f3^2*f1^2*e2^2-27*f3^2*e3*e1^3
+2*f3^2*f2*e1^4)*X^2
+(-54*f2^3*e3^3-54*f3^3*e2^3-3*f1^4*f2*e3^3-27*f3^2*e3*e2^3+3*f1*f2^3*e3^2*e1^2
-8*f1^3*f3*e2^3*e3+18*f1*f2^3*e3^2*e2-2*f1^3*f2^2*e3^2*e1^2-27*f3^3*f1*e2^2*e1
-3*f2*f1*f3*e2^4*e1-2*f2^4*e3*e2*e1^2+18*f3^2*f2*f1*e2^3+27*f2^2*f1^2*f3*e3^2
+18*f2^3*e3^2*e2*e1-2*f2^3*f1^2*e3*e2^2-54*f3^2*f1^3*e3^2+27*f3^2*f1^2*e3*e2^2
-3*f2^4*f1*e3^2+27*f2^2*f1^2*e3^3-2*f1^3*f3^2*e2^3+4*f3*f2^2*e2^4-2*f3*f2^3*e2^3
-27*f2^3*f3*e3^2+33*f1^3*f3*e3^2*e2*e1-135*f3^2*f2*f1*e3*e2*e1+18*f1^3*f2*f3*e3^2*e1
-2*f2^3*e3^2*e1^3+6*f3*f2*f1*e3*e2^2*e1^2+33*f3^2*f2*f1*e1^3*e3-2*f2^5*e3*e2
+15*f1^3*f2*e3^3*e1-2*e3^2*f1^3*f2*e2^2+6*f3^2*f1*e2^4-2*f3^3*f1*e1^5-3*f3^3*e1^4*e2
-3*f3^2*e2^4*e1-27*f3*f1^2*e3^3*e1-f3*f2*f1^3*e2^3*e1+3*f2^2*f1*e3^2*e2*e1^2
-f1^3*f2*e3^2*e2*e1^2+9*e3^2*f2^2*f1*e2^2+9*f3*f1^2*e3^2*e2*e1^2-135*f3*f2*f1*e3^2*e2*e1
+18*f3^2*f1*e3*e1^3*e2-3*f3^2*f2*f1*e1^4*e2+15*f3*f2*f1^2*e1*e3*e2^2+33*f3*f2*f1*e2^3*e3
-27*f3*f2*e3^2*e2*e1^2-27*f3^2*f1^2*f2*e3*e2-2*f3*f1^2*e2^3*e1*e3-f1*f2^2*e2^3*e1*e3
-27*f2^2*f1*e3^3*e1+4*f2^4*e3*e2^2-2*f2^3*e2^3*e3-27*f3^3*e1^3*e3+27*f3^3*e1^2*e2^2
-54*f3^2*e3^2*e1^3-f1^3*f2^2*e3*e2^2*e1+3*f3*f2^2*e2*e3*e1^3+3*f3*f2*f1^3*e3*e2^2
-27*f3*f2*e3^2*e2^2+81*f3*f2*e3^3*e1-108*f3*f2^2*e3^2*e2-3*f2^4*f1*e3*e2*e1
+15*f3*f2*e3*e2^3*e1-2*f3*f1^4*e3*e2^2*e1+15*f2^3*f1*f3*e3*e2-f3^2*f1^2*f2*e1^3*e2
-f2^2*f1*f3*e2^2*e1^3+9*f3^2*f1^2*f2*e3*e1^2-2*f2*f3*e2^5-108*f3^2*f1^2*e3^2*e1
+81*f3^2*f2*e3^2*e1+27*f3^2*e3*e2^2*e1^2+81*f3^2*e3^2*e2*e1+6*f2^2*f1^2*e3^2*e2*e1
-f2^3*f1*e3*e2*e1^3-5*f3^2*f2*e1^3*e2^2-f2^3*f1^2*e3*e2*e1^2+18*f3^2*f1^3*e3*e2*e1
+33*f2^3*f3*e3*e2*e1-f2*f1^2*f3*e2^3*e1^2-2*f2^3*f1*f3*e3*e1^2-3*f1^4*f2*e3^2*e2*e1
-f2^3*f1*f3*e2^2*e1+6*f3^2*f2*f1*e1^2*e2^2-f2^2*f1^2*f3*e2^2*e1^2+81*f3^3*e3*e2*e1
+3*f3^2*f1^2*f2*e2^2*e1+18*f3*f2*f1*e3^2*e1^3-2*f2^2*f1*f3*e3*e1^4-2*f1^5*e3^3*e1
-108*f3^2*f1*e3^2*e1^2-27*f3^3*f1*e3*e1^2+4*f3^2*f1^2*e3*e1^4-2*f3^2*f2^2*e2*e1^3
+3*f3^2*f1^2*e2^3*e1-f2^2*f1^2*e2^2*e1^2*e3-27*f3*f1^3*e3^3-2*f3*f2*f1^2*e2^4
-5*f1^3*f2^2*e3^2*e2+27*f3*f2^2*e3^2*e1^2-8*f2^3*f3*e3*e1^3-2*f2^2*f3*e2^3*e1^2
-108*f3^2*f2*e3*e2^2-5*f2^3*f1^2*e3^2*e1+4*f3*f1^4*e3^2*e1^2+81*f3^2*f1*e3^2*e2
+81*f3^3*f1*e3*e2+6*f3*f1^4*e3^2*e2-27*f3^2*f2^2*e3*e2-2*f1^3*f3*e3^2*e1^3
-5*f3^2*f1*e2^3*e1^2-2*f3^2*f1^2*e1^3*e2^2-2*f3^2*f1^3*e1^3*e3+6*f3^2*f2*e3*e1^4
+15*f3^3*f1*e1^3*e2+18*f3^2*f2*e2^3*e1+9*f3^2*f2^2*e2^2*e1+81*f2*f1*f3*e3^3
+81*f3^2*f2*f1*e3^2+6*f2^4*e3^2*e1+6*f2^2*f1^2*f3*e3*e1*e2+15*f2^2*f1*f3*e3*e1^2*e2)*X
+9*f1^3*f3*e3^3*e2*e1-15*f3^3*f2*e2^2*e1^3-27*f3^4*e2^3-9*e3^2*f3*f2*f1*e2^2*e1^2
+f3^2*f2^3*e2^2*e1^2-9*f2^2*f1^2*e3^3*e2*e1+e3^2*f2^3*e2^2*e1^2-2*e3^2*f1^3*f3*e2^3
-27*f3*f2*f1*e3^3*e2*e1+f2^2*f1^2*e3^3*e1^3+f1^6*e3^4+f1^4*f2*e3^3*e2*e1
-6*f3^2*f2^2*e2^3*e1^2-4*f2^3*e3^3*e1^3+e3^2*f1^3*f3*e2^2*e1^2+18*f2^3*e3^3*e2*e1
+2*f2^5*e1^2*e3^2+f3^4*e1^6+2*f2^3*f1^3*e3^3+f3^2*f2^2*e2^2*e1^4+2*f3^2*f2*e2^4*e1^2
+18*f3*f2*f1*e3^3*e1^3-27*f3^3*e3^2*e1^3-4*f3^2*f2^3*e2^3-27*f3^2*f1^3*e3^3
+2*f3^3*f1*e2^2*e1^4-9*f3^3*e2^4*e1+27*f2^2*f1^2*e3^4-9*f1^4*f2*e3^4+9*f3^2*f2^2*e2^4
-27*f3^3*e3*e2^3+f1^2*f3^2*f2^2*e2^3-9*f2^4*f1*e3^3-81*f3^2*f2*e3^2*e2^2
+2*f3^3*e2^3*e1^3+27*f3^3*f2*e3*e2*e1^2-15*f3^2*f1*e3*e2^3*e1^2+27*f3^2*f2*e3^2*e2*e1^2
+2*f3^2*f2^2*f1*e3*e1^4+27*f3^3*f1*e3*e2*e1^3-10*f3^2*f1^3*e3*e2^2*e1^2
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+27*f3^2*f2*f1*e3^2*e1^3+27*f3^3*f1^2*e3*e2*e1^2+27*f3^2*f1^2*e3^2*e2^2+f3^2*f1^4*e2^4
-3*f3^2*f1^3*f2*e3*e2*e1^2-7*f3^2*f2*f1^2*e1^3*e2*e3-15*f3^2*f2^2*e3*e2*e1^3
+2*f3^2*f2^2*e3*e1^5-6*f3^3*f1^2*e3*e1^4-2*f3^2*f2^3*e3*e1^3-9*f3^4*e2*e1^4
-9*f3^2*f2^2*f1^2*e3*e2*e1-9*f3^3*f1*e2^3*e1^2+18*f3^3*f2*f1*e2^3-81*f3^3*f2*e3*e2^2
+2*f3^2*f1*e2^5*e1+27*f3^2*e3^2*e2^2*e1^2-9*f3^2*e3*e2^4*e1+f3^2*f1^2*e2^4*e1^2
-9*f3^3*f1^2*e2^3*e1-3*f3*f1^2*f2*e2*e3^2*e1^3-8*f3^2*f1^3*e3*e2^3+9*e3^2*f3*f2*f1*e2^3
+f3^2*e2^6+e3^2*f2^2*f1^2*e2^3-4*f1^3*f3*e3^3*e1^3-27*f2^3*f3*e3^3-6*f2^5*e3^2*e2
-6*f3^2*f1^2*f2*e2^4+27*f3^4*e2^2*e1^2-27*f3^2*e3^3*e1^3-4*f3^3*f1^3*e2^3+f2*f1*f3*e2^4*e1*e3
+27*f2^2*f1*f3*e3^3*e1-18*f3*f2*f1^2*e1*e3^2*e2^2-54*f3^2*f2*f1*e3^2*e2*e1
-81*f3^2*f2^2*e3^2*e2-7*f2^2*f1*f3*e2^3*e1*e3-9*f3^2*f2*e3*e2^2*e1^3+9*e3^2*f3^2*f1^2*e1^4
-4*f3^3*f1^3*e3*e1^3-81*f3^3*f1*e3^2*e1^2+54*f3^3*e3*e2^2*e1^2-6*f3^3*f1*e3*e1^5
+12*f3^2*f1^3*e3^2*e1^3+9*f3^2*f1^4*e3^2*e1^2-81*f3^2*f1*e3^3*e1^2-81*f3^3*f1^2*e3^2*e1
-81*f3^2*f1^2*e3^3*e1+3*f3^2*f1^2*f2*e2^3*e1^2+27*f3^3*f1*e3*e2^2*e1+f3^2*f1^3*f2*e1*e2^3
-5*f3^2*f2*f1*e2^4*e1+f3^2*f1*f2^2*e1^3*e2^2+27*f3^2*f2^2*f1*e3*e2^2-9*f3^2*f1^3*f2*e2^2*e3
-5*f3^2*f2*f1*e3*e2*e1^4+2*f3^3*f2*e1^5*e2-6*f3^2*f1^2*e3*e2^2*e1^3+27*f3^2*f1^2*e3^2*e2*e1^2
+9*f3^3*f2*f1*e3*e1^3-18*f3^2*f2^2*f1*e3*e2*e1^2+27*f3^2*f1*e3^2*e2*e1^3-27*f3^3*f2*f1*e3*e2*e1
+f2^6*e3^2+f3^3*f2*f1*e1^4*e2+27*f3^2*f1^2*f2*e3^2*e2-9*f3^3*f2*f1*e2^2*e1^2-3*f3^2*f2^2*f1*e2^3*e1
+2*f3^2*f2*f1*e2^3*e1^3+27*f3^2*f2*f1*e3*e2^3+f2*f1^2*f3*e2^3*e1^2*e3+27*f3^2*f1*e3^2*e2^2*e1
+27*f3^2*f2^2*f1*e3^2*e1+18*f3^3*f1^3*e3*e2*e1-15*f3^2*f1^2*e3*e2^3*e1+27*f3^2*f2*e3*e2^3*e1
+9*f3^2*f2^3*e3*e2*e1+27*f3^2*f1^3*f2*e3^2*e1+3*f3*f2*f1^3*e2^3*e1*e3+f2^4*f1*f3*e1*e2*e3
-7*f1^3*f2*f3*e2*e3^2*e1^2+27*f3^2*f2^2*e3*e2^2*e1-6*f3^2*f1^4*e3*e2^2*e1+27*f3^2*f1^3*e3^2*e2*e1
-9*f3^3*e3*e1^4*e2-7*f2^3*f1*f3*e2^2*e1*e3+6*f2^2*f1^2*f3*e2^2*e1^2*e3+3*f3*f2^2*f1^3*e2^2*e1*e3
-27*f3^3*f1^3*e3^2-4*e3^2*f2^3*e2^3-27*f2^3*e3^4+2*f2^4*f1^2*e3^2*e2+27*f3^2*f2^2*e3^2*e1^2
+2*f2^5*f1*e1*e3^2-6*f2^3*f1^2*e3^2*e2^2+f2^4*e1^4*e3^2-9*f1^4*f2*f3*e3^3+54*f2^2*f1^2*f3*e3^3
-6*f2^4*e3^2*e2*e1^2+2*f1^3*f2^2*e3^3*e1^2+27*f1*f2^3*e3^3*e2-9*f1*f2^3*e3^3*e1^2
+2*f2^3*f1^3*e3^2*e2*e1-10*f2^2*f1^2*f3*e3^2*e1^3+27*f3*f1^2*f2*e3^3*e1^2+27*f1^3*f2*f3*e3^3*e1
+27*f2^2*f1*f3*e3^2*e2^2-6*f2^4*f3*e2^2*e3+12*f3*f2^3*e2^3*e3-6*f3*f2^2*e2^4*e3
-10*f2^2*f1^2*f3*e2^3*e3+2*f2^4*f3*e1^2*e2*e3+f3^2*f2^2*f1^2*e1^3*e3+2*f3*f2^3*e1^4*e2*e3
-6*f2^2*f1^3*f3*e3^2*e1^2+27*f2^3*f1*f3*e3^2*e2+2*f3*f1^4*e3^2*e2^2*e1-5*f2^4*f1*e3^2*e2*e1
-81*f3*f2^2*e3^3*e2-15*f3*f2*f1^3*e3^2*e2^2-9*f3*f2^2*e2*e3^2*e1^3+f1^3*f2^2*e3^2*e2^2*e1
+27*f3*f1^2*f2*e3^3*e2-3*f1*f2^3*e3^2*e2^2*e1-6*f2^2*f1*f3*e3^2*e1^4+27*f3*f2^2*e2^2*e3^2*e1
-15*f2^3*f1*f3*e3^2*e1^2+27*f2^3*f3*e3^2*e2*e1-15*f2^3*f1^2*f3*e3^2*e1+3*f2^3*f1^2*e3^2*e2*e1^2
+f2^3*f1*e3^2*e2*e1^3-9*f3*f2^2*f1^3*e3^2*e2+2*f2^2*f3*e2^3*e1^2*e3+2*f1^4*f2*f3*e2^3*e3
+2*f3*f2*f1^2*e2^4*e3+27*f3^3*f1^2*e3*e2^2+2*f3*f1^5*e2^2*e3^2-6*f3*f1^4*e3^3*e1^2
+2*f3^3*f1^2*e1^3*e2^2+f2^2*f1^4*e2^2*e3^2-6*f3*f1^5*e3^3*e1-9*f2^3*f1^2*e3^3*e1
+f2^4*f1^2*e1^2*e3^2-9*f2^4*f1*f3*e3^2+2*f1^5*f2*e3^3*e2+2*f2^2*f1^4*e3^3*e1+2*f2^4*f1*e1^3*e3^2
-8*f2^3*f3*e3^2*e1^3+27*f3*f2^2*e3^3*e1^2-15*f1^3*f2^2*e3^3*e2+27*f3^2*f2^2*f1^2*e3^2
+2*f3^2*f1^3*e2^4*e1+2*f2^3*f1^2*f3*e2^2*e3-10*f2^3*f3*e2^2*e1^2*e3+3*f2^3*f1*f3*e1^3*e2*e3
+f2^3*f1^2*f3*e1^2*e2*e3+f3^3*f1^3*e2^2*e1^2+27*f3^3*f2*e2^3*e1-5*f1^4*f2*f3*e2*e3^2*e1
+27*f3^2*f1^2*f2*e3^2*e1^2-6*f3^2*f2*e2^5+9*f2^4*e3^2*e2^2+2*f3^2*f1^2*e2^5+3*f2^2*f1*f3*e2^2*e1^3*e3;
}
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