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Introduction

Motivation

Soit K un corps de nombres, G un groupe de permutations transitif sur n élé-
ments. On définit Fk ,,(G) I'ensemble des classes d’isomorphisme d’extensions
L/K de degré n telles que la cloture galoisienne N de L/K ait groupe de Galois
isomorphe & G.

Cette thése étudie la fonction de comptage

Nin(G,X) = {L € Frn(G),No(L/K) < X},

qui énumeére les éléments de Fi ,,(G), ordonnés par discriminant relatif. On va
adopter deux points de vue différents, et, en quelque sorte, complémentaires.

Asymptotique

D’un co6té, on a le point de vue asymptotique, quand X tend vers l'infini. Celui-
ci est un théme classique, qui remonte & Gauss [35], qui compta les classes de
formes quadratiques binaires avec discriminant borné. Un certain nombre de
conjectures importantes ont été formulées récemment a propos de ce sujet, par
Malle [43], Bhargava ([3, §6.2]) et Ellenberg et Venkatesh [30]. La conjecture de
Malle est sans doute la plus célébre. Elle affirme que

Ngn(G, X) ~ (G, K) XU (log X)P(E )1

avec des constantes explicites, a dépendant seulement de G et b et ¢ dépendant
de G et de K.

Cette conjecture a été prouvée pour les groupes abéliens [42, 55], et pour la
plupart des extensions de degré < 5, au moins sur Q. Un certain nombre de
résultats fondamentaux a été obtenu, en particulier, par Cohn [21], Davenport-
Heilbronn [26], Datskovsky-Wright [27], Cohen-Diaz y Diaz-Olivier [17, 18, 19],
et Bhargava [5, 6, 7]. Pour un survol historique sur les développements de ce
sujet jusqu’a 2005, on invite le lecteur a faire référence a [16] et [3].

En 2005, Kliiners [40] donna un contre-exemple & la conjecture de Malle,
qui se basait sur la présence de certaines racines de 'unité dans des extensions
intermediaires. Tiirkelli [52] a proposé une modification a la conjecture de Malle,
qui évite ce type de contre-exemples.

Algorithmique

Notre deuxiéme point de vue dans le comptage d’extensions de corps de nombres
est algorithmique. Dans ce cadre, on peut placer le travail de Belabas [1, 2]



ainsi que beaucoup d’autres (pour un survol, voir [44]). Dans cette perspective
particuliére, la théorie de la réduction et la géometrie des nombres, ainsi que
les bijections explicites motivées par la classification des espaces préhomogénes,
deviennent les acteurs principaux. Si les derniers sont des objets plutot récents,
la théorie de la réduction a une histoire assez longue, qui remonte au moins au
travail de Gauss sur les formes quadratiques binaires et ternaires. Aprés lui,
Bianchi [10], Julia [39] et d’autres, ont generalisé cette théorie & d’autres corps
de nombres, en particulier ceux quadratiques imaginaires. Tout le 19éme siécle
a été fasciné par la théorie des invariants, un chapitre conclu par la preuve
de Hilbert que l'algébre des invariants est de type fini [37]. Aprés cela, la
théorie des invariants a été rendue de plus en plus abstraite, en utilisant les
répresentations de groupes et la théorie des invariants géometriques de Mumford
[46]. Mais la théorie des invariants classique trouva des nouvelles applications,
et devint & nouveau trés actuelle dans les travaux plus récents de Elstrodt,
Grunewald et Mennicke [31, 32, 33] (dans leur travail sur ’espace hyperbolique
3-dimensionnel), Cremona et Stoll [23, 25] (qui étaient motivés par 'étude des
courbes elliptiques et hyperelliptiques) et enfin dans le travail de Bhargava [5,
6, 7, 8, 9], qui généralise la loi de composition de Gauss et trouve des bijections
trés intéressantes, pour paramétriser les corps de nombres de degré < 5 et des
parties de leur groupe de classes.

Structure de la thése

Cette thése s’intéresse aux deux maniéres de compter les corps de nombres
décrites ci-dessus.

Le premier chapitre est un travail joint avec Henri Cohen; on prouve une nou-
velle formule asymptotique pour les extensions quadratiques avec une résolvante
quadratique fixée (Theorem 1.6.2), en raffinant la Conjecture de Malle.

Le second chapitre décrit un nouveau algorithme, pour énumerer toutes les
extensions cubiques d’un corps de nombres quadratique imaginaire de nombre
de classes 1, avec discriminant relatif borné, en temps presque-linéaire.

L’appendix A esquisse la preuve de 'extension de la théorie de Davenport-
Heilbronn, die & Taniguchi.

L’appendix B décrit ’algorithme classique pour énumerer les extensions cu-
biques d’un corps de nombres donné, en utilisant la théorie des corps de classes
de rayon.

L’appendix C étudie les erreurs d’arrondis dans les calculs en précision flot-
tante dans notre algorithme principal.

L’appendix D donne des polynémes explicites dont on a besoin pour vérifier
rigoureusement les conditions de bords dans notre théorie de la réduction pour
formes cubiques binaires sur des corps quadratiques imaginaires.

On va maintenant présenter en détail nos résultats principaux.

Comptage d’extensions cubiques avec résolvante quadra-
tique fixée

Soit k un corps de nombres fixé. On considére une extension cubique K/k et
on appelle N la cloture Galoisienne de K/k. Quand K/k n’est pas cyclique on
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a Gal(N/k) ~ Ss, et le corps de nombres N contient une unique sous-extension
quadratique Ks/k.

N

A

K Cs

3 K2

A
k
Quand K/k est cyclique on a N = K et Gal(N/k) ~ C5. Ce cas a déja été
traité dans [18], mais on 'inclut ici pour des raisons d’exhaustivité, en posant
K5 = k; par abus de langage on appelle toujours K, une extension quadratique
de k, méme si [Ky : k] = 1.

On fixe lextension quadratique Ks/k, et on appelle F(K3) lensemble des
extensions cubiques K/k, modulo k-isomorphisme, telles que la sous-extension
quadratique de la cloture Galoisienne de K/k soit isomorphe a Ko.

On définit

N(K/k, X) = {K € F(K2), Nijg(o(K/k)) < X}

ot (K /k) est le discriminant relatif de K/k et N, g dénote la norme absolue.
On invite le lecteur & remarquer que

Nis(83,X)= Y N(Ka/k,X), et Nis(Cs,X)=N(k/k X),
Ko /k,Ka#k

donc on est en train d’étudier un raffinement de la conjecture de Malle. Notre
théoréme principal (Theorem 1.6.2) donne une formule asymptotique pour
N(K3/k, X); on I’énonce ici seulement dans le cas k = Q. Dans ce simple cas,
on utilise la notation N (K5, X) a la place de N(K>5/Q, X).

Théoréme. Comme ci-dessus, soit Ko = Q(\/E) une extension de Q avec
[K2 : Q] <2, on dénote par K}, = Q(v/—3D) le corps miroir de K, et l’on pose
g(Kb) =3 si Ky = Q(v/-3), et g(K4) =1 sinon. Alors:

(1) (Corps cubiques purs.) On a
N(Q(V=3), X) = C(Q(V=3))Y (log(Y) + D(Q(V=3)) = 1) + O(Y*/*+%),
pour tout € > 0, o0 Y = /X /0(K2/k)

v =gl (1- 5+ )

D(Q(V=3)) = 2y — —log +6‘Z = kfp ok

et v est la constante d’Euler.
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(2) (Cas général.) Pour D # —3, on note ar(p) le nombre d’idéaux premiers
de degré 1 (non ramifiés) au dessus de p dans K. Alors

N(@Q(VD), X) = C(Q(VD))Y + O(Y?/3+¢) ,
oY = /X/o(Ky/k)

CQVD)) = g(Ky) 0D H( ) (1-1),

b

et
11 St 3ZK§ = p% s
c3(K3) =415 8t 3Ly = P1,
21 st 3ZK§ =pi1p2 .

On souligne le fait que la formule dans (2) a été donnée a cause de son élégance,
mais elle ne doit pas étre utilisée pour les calculs pratiques des constantes; pour
cela se référer au Corollaire 1.8.6 ci-dessous.

Un algorithme pour énumerer les extensions cubiques

Le second chapitre concerne le point de vue algorithmique. L’idée est de généraliser
I’algorithme de Belabas énumeérant les extensions cubiques de Q, & d’autres
corps de nombres. L’outil principal qui nous permet cette généralisation est le
théoréme de Taniguchi [50], qui étend les bijections de Davenport-Heilbronn.

Le théoréme de Taniguchi énumere les O-algebres cubiques au dessus d’un
anneau de Dedekind arbitraire O, mais ’appliquer concrétement pour obtenir
un algorithme m’a obligée & faire un certain nombre de restrictions.

En ce moment, ’algorithme presenté ici marche seulement sur les corps
de nombres quadratiques imaginaires avec nombre de classes 1, c’est a dire
Q(v=D), avec D € {1,2,3,7,11,19,43,67,163}.

Une généralisation & d’autres corps de nombres quadratiques imaginaires
est sans doute possible, mais nécessite un travail additionel sur les actions de
certains groupes de matrices sur l’espace hyperbolique 3-dimensionnel, donc
on le laissera comme un probléme ouvert. Pour les corps de nombres avec un
nombre infini d’unités, le probléme semble méme plus difficile.

Le résultat principal de ce chapitre est le suivant.

Théoréme. Soit K un corps de nombres quadratique imaginaire avec nombre de
classes 1. Il existe un algorithme qui énumere toutes les extensions de K jusqu’a
une borne X sur la norme du discriminant relatif. Cet algorithme marche en
temps O-(X11€), pour tout € > 0.

Notre algorithme utilise la théorie de la réduction des formes hermitiennes bi-
naires sur I’anneau des entiers O de K. Comme le nombre de corps de nombres
calculés est >k X, notre algorithme est essentiellement linéaire dans la taille
de la sortie.

Il est intéressant de comparer cet algorithme avec le classique, qui utilise
la théorie des corps de classes de rayon. Ce dernier marche sur un corps de
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base quelconque K; une borne pour le discriminant relatif d’une extension cu-
bique L/K donne une borne pour le discriminant du sous-corps quadratique
K5 /K de sa cloture galoisienne Lo /K, mais aussi une borne sur le conducteur
de Pextension cyclique cubique Ls/Ks. L’algorithme parcourt tous les corps
possibles K, et les conducteurs f C Ok, et étudie les sous-groupes d’indice 3
dans les corps de classes de rayon Cl;(K>).

On a étudié et implementé cet algorithme classique, qui requiert en partic-
ulier le calcul du corps de classes de rayon de tous les corps Ks; sans supposer
GRH, cela requiert un temps (disc K»)'/2 pour chaque corps, ce qui est de
l'ordre de X'/2; et il y a, malheuresement, > X de tels corps Ko, ce qui
donne un algorithme de complexité Q(X?3/2). On souligne le fait que notre al-
gorithme est presque-linéaire inconditionellement: pour un corps de nombres
quadratique imaginaire K de nombre de classes 1 donné, on énumeére les équa-
tions qui définissent toutes les extensions cubiques de K de discriminant borné
sans avoir besoin de calculer des invariants arithmétiques pour d’autres corps
de nombres que K.

ix






Introduction

Motivation

Let K be a number field, G a transitive permutation group on n letters. We

define Fi ,(G) as the set of isomorphism classes of extensions L/K of degree n

such that the Galois closure N of L/K has Galois group isomorphic to G.
This thesis studies the counting function

Ngn(G, X) = {L € Frn(G), NO(L/K) < X},

enumerating the elements of F ,,(G), ordered by relative discriminant. We will
use two different, and somehow complementary, points of view.

Asymptotics

On one side, we have the asymptotic point of view, as X tends to infinity.This is
quite a classical theme dating back to Gauss [35], who counted classes of binary
quadratic forms of bounded discriminant. A number of important conjectures
have been formulated recently on this subject, by Malle [43], Bhargava (see [3,
§6.2]) and Ellenberg and Venkatesh [30]. Malle’s conjecture is perhaps the most
famous. It says that

NK,n(Ga X) ~ C(G,K)XG(G) (IOgX)b(G"K)*l’

with explicit constants, a depending only on G and b and ¢ depending on G and
K.

This conjecture have been proved for abelian groups [42, 55], and for most ex-
tensions of degree < 5, at least over Q. A number of landmark results have been
obtained in particular by Cohn [21], Davenport-Heilbronn [26], Datskovsky-
Wright [27], Cohen-Diaz y Diaz-Olivier [17, 18, 19], and Bhargava [5, 6, 7]. For
an historical survey on this topic developments until 2005, see [16] and [3].

In 20053, J. Kliiners [40] gave a counterexample to Malle’s conjecture, relying
on the presence of appropriate roots of unity in intermediate extensions. Tiirkelli
[52] proposed a modification to Malle’s conjecture which avoids this kind of
counterexamples.

Algorithmics

Our second point of view in counting number field extensions is algorithmic. In
this area we can place the work by Belabas [1, 2] and many others (for a sur-
vey, see [44]). In this particular perspective, reduction theory and geometry of
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numbers, as well as explicit bijections motivated by the classification of preho-
mogeneous vector spaces, become the main actors. If the latter ones are rather
recent objects, reduction theory has a quite long story, dating back at least to
Gauss’s work on binary and ternary quadratic forms. After him, Bianchi [10],
Julia [39] and others generalized this theory to other number fields, in particular
imaginary quadratic ones. The whole 19th century was fascinated by the theory
of invariants, a chapter closed by Hilbert’s proof of the finite generation of the
algebra of invariants [37]. After that, invariant theory was more and more ab-
stracted, using group representations and Mumford’s geometric invariant theory
[46]. But classical invariant theory found new applications, and it got again very
actual in more recent works by Elstrodt, Grunewald and Mennicke [31, 32, 33]
(on their work about the hyperbolic 3-space), Cremona and Stoll [23, 25] (who
were motivated by the study of elliptic and hyperelliptic curves) and finally in
the work of Bhargava [5, 6, 7, 8, 9], which generalizes Gauss’s composition law
and finds amazing bijections parametrizing number fields of degree < 5, and
parts of their ideal class groups.

Thesis’ Structure

This thesis is about both “ways” of counting number fields.

The first chapter is joint work with Henri Cohen; it proves a new asymptotic
formula for cubic extensions with given quadratic resolvent (Theorem 1.6.2),
refining Malle’s conjecture.

The second chapter describes a new (essentially) linear-time algorithm to
list all the cubic extensions of an imaginary quadratic number fields of class
number 1, given a bound on the relative discriminant.

Appendix A sketches the proof of Taniguchi’s extension of the Davenport-
Heilbronn theory.

Appendix B describes the classical class field theory algorithm to enumerate
cubic extensions of a given number field.

Appendix C studies the round-off errors in the floating point computations
in our main algorithm.

Appendix D gives explicit polynomials needed to check rigorously the bound-
ary conditions in our reduction theory for binary cubic forms over imaginary
quadratic fields.

We now present in more detail our main results.

Counting cubic extensions with given quadratic resolvent
Let us fix a number field k. We consider a cubic extension K/k and we call N
the Galois closure of K/k. When K/k is not cyclic we have Gal(N/k) ~ Ss,

and the field N contains a unique quadratic subextension K5 /k.
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When K/k is cyclic we have N = K and Gal(N/k) ~ C5. This case has already
been treated in [18], but we include it for the sake of completeness by setting
K5 = k; by abuse of language we still call K5 a quadratic extension of k, even
though [K5 : k] = 1.

We fix the quadratic extension Kj/k, and we call F(K3) the set of cubic
extensions K/k, up to k-isomorphism, such that the quadratic subextension of
the Galois closure of K/k is isomorphic to Ks.

We define

N(Ka/k, X) = {K € F(K3), Nijg(o(K/k)) < X}

where d(K/k) is the relative discriminant ideal of K/k and Nj g denotes the
absolute norm. Note that

Ni.3(S3,X) = Z N(K3/k,X), and Ni3(Cs5,X)=N(k/k X),
Ko /k,Ka#k

so we are studying a refinement of Malle’s conjecture. Our main theorem (The-
orem 1.6.2) gives an asymptotic formula for N (K3 /k, X); we state it here only
for k = Q. In this simple case, we will use the notation N (K5, X) instead of

Theorem. As above, let Ky = Q(v/D) be an extension of Q with [Ky : Q] < 2,
denote by K = Q(v/—3D) the mirror field of Ko, and set g(K}) = 3 if K} =
Q(v-3), and g(K%) = 1 otherwise. Then:

(1) (Pure cubic fields.) We have
N(Q(V=3),X) = C(Q(W=3))Y (log(Y) + D(Q(V=3)) — 1) + O(Y*/*¥),
for every e > 0, where Y = \/X/0(K2/k)
7 3 2
C(Q(V-3)) = 30 H (1 T pg>
D(Q(V3)) =2y~ 5 log(3) + DD ffp L
and vy is Euler’s constant.
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(2) (General case.) For D # —3, denote by a(p) the number of (unramified)
degree 1 primes above p in K. Then

N(@Q(VD),X) = C(QVD))Y + O(Y?/3) |
where Y = /X /0(K2/k)

@Dy = stz IT (14 ) (1-1),

and
11 if 3%, = p?,
e3(Ky) =< 15 if 3k, =p1,
21 if 3Zk, = pip2 -

Note that the formula in (2) is given because of its elegance, but it should not
be used for practical computation of the constants; see Corollary 1.8.6 below.

An algorithm for computing cubic extensions

The second chapter deals with the algorithmic point of view. The idea is to
generalize Belabas’s algorithm for listing cubic extensions of Q to other number
fields. The main tool allowing us this generalization is Taniguchi’s theorem [50],
which generalizes Davenport-Heilbronn bijections.

Taniguchi’s theorem enumerates cubic O-algebras over an arbitrary Dedekind
domain O, but applying it concretely to obtain an algorithm obliged me to make
a number of restrictions.

At this moment, the algorithm presented here works only over imaginary
quadratic fields with class number 1, that is Q(v/—D), with D € {1,2,3,7,11,19,43,67,163}.

A generalization to other imaginary quadratic fields should be possible, but
this needs some additional work on the actions of some groups of matrices on
the hyperbolic 3-space, so we shall leave it as an open question. For number
fields, with infinitely many units, the problem seems even more difficult.

Our main result in this chapter is the following.

Theorem. Let K be an imaginary quadratic number field with class number 1.
There exists an algorithm which lists all cubic extensions of K up to a bound
X on the norm of the relative discriminant ideal. This algorithm runs in time
O-(X'*#), for all e > 0.

Our algorithm uses the reduction theory of binary Hermitian forms over the
ring of integers Ok of K. Since the number of computed fields is >k X, our
algorithm is essentially linear in the output size.

It is interesting to compare this algorithm with the classical one, using class
field theory. The latter works over an arbitrary base number field K; a bound
for the relative discriminant of a cubic extension L/K yields both a bound for
the discriminant of the quadratic subfield K»/K of its Galois closure Ly/K, as
well as on the conductor of the cyclic cubic extension Lo/Ks. The algorithm
loops over all possible K2, and conductors § C Og, and studies the index-3
subgroups in the ray class groups Cl;(K>).
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We studied and implemented this classical algorithm, which requires in partic-
ular the computation of the class groups of all the fields Ks; without assuming
the GRH, this already requires time (disc K5)/? for a single field, which is of
the order of X'/2; and there are unfortunately >x X such fields K5, yielding
an Q(X?/?) algorithm. We stress the fact that our algorithm is almost linear
unconditionally: for a given imaginary quadratic number field K of class num-
ber 1, we list defining equations for all cubic extensions of bounded discriminant
of K without needing to compute arithmetic invariants for number fields other
than K.
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Chapter 1

Counting Cubic Extensions
with given Quadratic
Resolvent

This chapter is joint work with Henri Cohen [20].

1.1 Introduction

Let k be a number field, fixed once and for all as our base field, let K/k be a
cubic extension of k, and let N be a Galois closure of K/k. When K/k is not
cyclic we have Gal(N/k) ~ S3 ~ D3, the dihedral group with 6 elements, and
the field N contains a unique quadratic subextension K»/k, so the very simple
field diagram is the following, denoting by 7o the generator of Gal(Ks/k) and
by o a generator of Gal(N/K>):

N

(12)
2

K (o) | Cs

The group relations are 73 = 0 = 1 and o7, ' =o'

When K/k is cyclic we have N = K and Gal(N/k:) Cs5. Although this
case has already been treated in [18], since the methods are almost identical we
include it in the present chapter by setting Ko = k, which by abuse of language
we will still call a quadratic extension of k, even though [K> : k] = 1.

We fix the quadratic extension Ks/k, and we call F(K3) the set of cu-
bic extensions K /k (considered up to k-isomorphism) such that the quadratic
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subextension of the Galois closure of K/k is isomorphic to K2. Our goal is to
compute an asymptotic formula for

N(Kz/k, X) = {K € F(K2), Nijg(o(K/k)) < X},

where 0(K/k) is the relative ideal discriminant of K/k and A denotes the ab-
solute norm.

By a well-known theorem (see for example Theorem 9.2.6 of [12]), the con-
ductor of the cyclic extension N/ K5 is of the form f(N/K3) = {(K/k)Zk,, where
f(K/k) is an ideal of the base field k£ (when K/k is noncyclic this is of course
not a conductor in the usual sense). When k = Q we will write f(K/Q) for the
positive integer generating the ideal f(K/Q) of Z.

Since 0(K/k) = 0(K2/k)§(K/k)?, it is clear that

N(Ky/k, X) = M(K3/k, (X/ Niyjg(0(Ka/k)))'?)
where

M(K2/k, X) = |{K € F(K2), Nyo(f(K/k)) < X}
= {K € F(K2), Ni,/o(f(N/K2)) < X?}],

so it is this quantity that we want to compute.

1.2 Galois Theory

Definition 1.2.1. We denote by p = (5 a primitive cube root of unity and we
set L = Ky(p) and k, = k(p). We let T be a generator of Gal(L/K3) (so that
T=11if p € Ks3), and we let T2 be a generator of Gal(K3/k) (so that 72 =1 if
Ky =k). We denote by G = Gal(L/k). Finally, as above we let o be one of the
two generators of the cyclic group of order 3 Gal(N/Ks) ~ Gal(N, /L), where

Remarks.

(1) By definition K5 is the fixed field of L by 7, so that 7 = 1 if and only if
7(p) = p. This is of course not true for 7.
(2) We have the following relations:

7'22722:1, TTy =ToT , TO =0T.

It follows that when 7 and 75 are nontrivial we have G ~ V,, the Klein
4-group, and otherwise G is either trivial or isomorphic to Cs.

We will need to distinguish five cases, according to the triviality or not of 7 or
T9, and to their action on p. We will order them as follows, and this numbering
will be kept throughout this chapter, so should be referred to.

(1) 7 =1 = 1: here K/k is a cyclic cubic extension, in other words K» = k,
Gal(N,/k) ~ C3, and p € k.

(2) 72 = 1 and 7(p) = p~!: here K/k is a cyclic cubic extension, so that
Ky =k, Gal(N./k) ~ Cs, in other words 70 = o7, and p ¢ k so L = k(p).

2



(3) 7 = 1 and 72(p) = p but 79 # 1: here K/k is noncyclic, p € k, and in
particular L = Ky, and Gal(N, /k) ~ Ds, in other words 70 = o~ 1.

(4) 7 = 1 and 72(p) = p~': here L = K, so that p € Ko, but p ¢ k, so
K3 = k(p), and again Gal(N,/k) ~ D3, in other words 70 = o~ 7.

(5) 7 # 1 and 75 # 1: here p ¢ Ko, so 7(p) = p~! but 72(p) = p, so that the
fixed field of L under 73 is equal to k, = k(p), and Gal(N,/k) ~ D3 x Cs,

in other words 7o = o7 and o = ¢~ 7.

Definition 1.2.2. (1) In cases (1) to (5) above, we set T = 0, {r + 1},
{2 + 1}, {2 — 1}, {7+ 1,72 + 1}, respectively, where T is considered as
a subset of the group ring Z|Gal(L/k)] or of F3[Gal(L/k)].

(2) We definev(rxt1)=7F1and (o £1) =71 F1.

(3) For any group M on which T acts, we denote by M[T| the subgroup of
elements of M annihilated by all the elements of T.

We will need the following trivial lemma.

Lemma 1.2.3. Let M be an F3[G]-module. For any t € T we have M[t] =
L(t)(M), and conversely M|[c(t)] = t(M).

Proof. It is clear that tu(t) = (t)t = 0. Conversely, assume for instance that
x € M[t], in other words that ¢(z ) 1. If t = 7 4+ ¢ with ¢ = £1 we thus have
7(x) = 2~ ¢. But then since ¢(t) =

— ¢, we have
(W)@ =72 =27 =2 %=z,
since € = 1 and since 23 = 1, M being an Fs-vector space. Same for 7. O

Proposition 1.2.4. (1) There exists a bijection between on the one hand iso-
morphism classes of extensions K/k having quadratic resolvent field iso-
morphic to Ko, and on the other hand classes of elements @ € (L*/L**)[T]
such that @ # 1 modulo the equivalence relation identifying @ with its in-
verse.

(2) If a € L* is some representative of &, the extension K/k corresponding to

a is the fized field under Gal(L/k) of the field N, = L(/«).

Proof. Since p € L, by Kummer theory, cyclic cubic extensions N, of L
are of the form N, = L({/a), where @ # 1 is unique in (L*/L**) modulo the
equivalence relation identifying @ with its inverse. If 82 = «, then if necessary
changing o into o ~! we may assume that o () = pf. Consider first the relations
involving 7. Note that in all cases 7 commutes with o, and that it is nontrivial
if and only if 7(p) = p~! (cases (2) and (5)). Thus,

o(67(6)) = pb7(0(6)) = pbr(pb) = 6(0) .

so by Galois theory 87(0) € L (since it is trivially stable by 7 it is in fact in K,
but we do not need this), so ar(a) is a cube, in other words o € (L*/L*3)[r +1].
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Consider now the relations involving 7. When it is nontrivial we have
70 = o~ 'm9. Thus, if in addition m(p) = p (cases (3) and (5)), a similar

computation gives
a(072(0)) = pi2(071(0)) = pbr2(p~'0) = 72(0) ,

so a € (L*/L**)[r2 4 1]. On the other hand, if 75(p) = p~' (case (4)), we check
in the same way that 75(0)/0 is stable by ¢ so here a € (L*/L**)[ry — 1].
Conversely, assume that these conditions are satisfied. The group conditions
on 7 and Ty are automatically satisfied, since they are so at the level of G =
Gal(L/k) which is a trivial, Cy or Vj, extension, and the group conditions on o
are exactly those corresponding to the set T. It follows that N, /k is Galois with
suitable Galois group. The uniqueness statement comes from the corresponding
statement of Kummer theory, since o and a~! give the same extension. O

Recall from [12] the following definition.

Definition 1.2.5. We denote by V5(L) the group of 3-virtual units of L, in
other words the group of u € L* such that uZy = q°> for some ideal q of L,

or equivalently such that 3 | vy(u) for any prime ideal p of L. We define the
3-Selmer group S3(L) of L by S3(L) = Vs(L)/L*>.

Since we will only consider 3-virtual units and the 3-Selmer group, we will
simply speak of virtual units and Selmer group. It is immediate that the Selmer
group is finite: more precisely we have the following lemma.

Lemma 1.2.6. We have a split exact sequence of F3|G]-modules

U(L)
R

— S3(L) — CU(L)B] — 1,

where the last nontrivial map sends U to the ideal class of q such that uZy = q>.

Proof. The exactness is immediate and left to the reader. Since it is also an
exact sequence of F3-vector spaces and since |G| divides 4 and is hence coprime
to 3, it follows from a general theorem of commutative algebra that it is an
exact sequence of F3[G]-modules. O

Proposition 1.2.7. (1) There exists a bijection between isomorphism classes
of cubic extensions K/k with given quadratic resolvent field Ko and equiva-
lence classes of triples (ag, a1, w) modulo the equivalence relation (ag, a1,@) ~
(a1, a0, 1/7), where ag, a1, and u are as follows:

(a) The a; are coprime integral squarefree ideals of L such that aga? €
CIU(L)® and aga? € (I/I®)[T], where I is the group of fractionals
ideals of L.
(b) we S3(L)[T], and w # 1 when ag = a; = Zr,.
(2) If (ag,a1) is a pair of ideals satisfying (a) there exist an ideal qo and an
element o of L such that apalql = aoZp with ag € (L*/L**)[T]. The

cubic extensions K/k corresponding to such a pair (ag,a1) are given as
follows: for any w € S3(L)[T] the extension is the cubic subextension of

N. = L(/aou) (for any lift v of u).
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Proof. Let N, = L({/a) as above. We can write uniquely aZ; = apaq®
where the a; are coprime squarefree ideals of L. Since o € (L*/L**)[T], we
clearly have aga? € (I/I3)[T]. On the other hand the class of aga? is equal to
that of =2 so aga? € CI(L)3. Now let ag, a; be given satisfying these properties.
There exists an ideal q (whose class is not necessary in the kernel of T') and an
element o € L such that (aga?)q® = aZy. Applying any t € T, we deduce from
the assumption on aga? that q3 = t(a)Zy for some ideal qy, so that t(a) is a
virtual unit, in other words that the class of ¢(«) is in S3(L). Since toc(t) =0,
we have t(«a) € S3(L)[c(t)], so by Lemma 1.2.3 we deduce that ¢(«) € ¢(S5(L)),
in other words that (o) = 73t(u), or equivalently ¢(a/u) = +3, for some virtual
unit u and some element . Thus, if we set oy = a/u, we have ag € (L*/L*3)[t],
and if uZy, = g3 we have aga?(q/qz2)® = aZr. We have thus shown that, given
apa? € (I/I3)[T], the condition that aga? € CI(L)? is necessary and sufficient
for the existence of qq and aq such that aga?qd = agZy, with ag € (L*/L**)[T].

The rest of the proof is immediate: if aga3qi = aoZy, with ag € (L*/L**)[T],
then aga?q® = aZ, with the same property for « if and only if a/ag = (q/q0)> €
V3 (L)[T], so a = agu for some lift u of @ € S3(L)[T]. Finally o and g give
equivalent extensions if and only if either 3 = a2, which does not change the
a; and changes v into uy? so does not change @, or if 3 = a~143. In this case

BZr = ay ar?q %y = ayad(yag tay g3,

which interchanges ag and a;, and since « is replaced by a~!, it changes @ into
1/, finishing the proof. Note that the only fixed point of this involution on
triples is obtained for ag = a; and u? = 1, but since ap and a; are coprime this
means that ag = a; = Zp, and @ = u3/u? = 1. O

Lemma 1.2.8. (1) The condition aga? € (I/I3)[T) is equivalent to a; =
T(ao), a; = TQ(CI()), ag = TQ(C[(]) and a; = Tg(al), and a; = T(a()) = Tg(ao)
in cases (2), (3), (4), and (5), respectively.

(2) The ideal agay of L comes from an ideal a,, of Ko (in other words aga; =
anZy1), and in cases (1), (2), and (3) it comes from an ideal of k, while
in cases (4) and (5), a, is an ideal of Ko invariant by .

Proof. In case (4), we have m(ag)m2(a1)? = apaiq® for some ideal q. By
uniqueness of the decomposition, it follows that ag and a; are stable by 7 (and
q = Zr), as claimed. In particular aga; is also stable by 72, and by 7 = 1. In
case (3), we have

7a(a0)m2(a1)? = ag 'y *q® = ayad(a/apa1)’

and again by uniqueness of this decomposition we deduce that ay and a; are
exchanged by 7o, as claimed. In particular aga; (which is an ideal of L = K5)
is not only stable by 75 but comes in fact from an ideal of k. The other cases
follow similarly. O

Note that in case (4) where L = Ky = k(p), an ideal of k is invariant by 7,
but conversely aga; is an ideal of L invariant by 7 if and only if it is equal to a
product atr, where a comes from an ideal of k, and v is a product of distinct prime
ideals p of L coprime to a and above a ramified prime p in L/k (in particular
above 3).



In case (5), which is the only case where G = Gal(L/k) ~ V,, we define K} to
be the quadratic subextension of L/k different from K, and k.. For later use,
we are interested in describing the prime ideals p of k, pZk, | a,. For this, we
set the following definition.

Definition 1.2.9. We define D (resp., D3) to be the set of all prime ideals p
in k with p{3Zy (resp., with p | 3Zy), such that:

e 10 other conditions in cases (1) and (4);
o pis split in L/k in case (2) and (3);
o the ideals above p are split in L/ Ko and L/k, in case (5).

Proposition 1.2.10. (1) Let p be a prime ideal of Ko dividing a, and let p
be the prime ideal of k below p. Then p € D or p € Ds.

(2) In cases (2) and (3), set K5 = L. Then in cases (2), (3), and (5) we have
p € D or p € D3 if and only p is split in K} /k.

Proof. (1). Let us treat case (2). Let p, be an ideal of L above p. Thus p,
divides one of the a;, so 7(p,) divides 7(a;) = a; with j # ¢. Since the a; are
coprime, we conclude that 7(p.) is coprime to p., so p is split. Cases (3) and
(5) are proved in the same way.

(2). Since cases (2) and (3) repeat the definition, assume we are in case
(5), let p, be an ideal of L above p, let p1, pa, and p3 be the ideals below p,
in k., Ko, and K/ respectively, and denote as usual by D() the decomposition
groups. Now p,/po is split if and only if D(p,/p2) = 1, and since D(p,/p2) =
D(p./p) N Gal(L/Ks), this is if and only if 7 ¢ D(p,/p). Similarly, p,/py is
split if and only if 7o ¢ D(p./p). Since Gal(L/k) = {1,7,72,772}, it follows
that the ideals above p are split in L/Ks and L/k, if and only if D(p./p) C
{1,772}. On the other hand, p is split in K /k if and only if D(p3/p) =1, and
since D(ps/p) ~ D(p./p)/D(p./ps3), this is the case if and only if D(p./p) =
D(p./p3), and again since D(p./p3) = D(p./p) N Gal(L/K}), if and only if
D(p./p) C Gal(L/K}) = {1,772}, proving the result. O

1.3 Conductors

The discriminant (equivalently, the conductor) of a cyclic Kummer extension
is given by an important theorem of Hecke (see [12], Section 10.2.9). We will
mainly need it in the cubic case, but we also need it in the quadratic case, where
it takes an especially nice form:

Theorem 1.3.1. Let k be a number field, let Ky = k(v/D) be a quadratic
extension with D € k* \ k*2, and write uniquely DZ; = aq?, where a is an
integral squarefree ideal. Then

(Ko /k) = f(K2/k) = 4a/c*

where ¢ is the largest ideal (for divisibility) dividing 2Z and coprime to a such
that the congruence x2/D =1 (mod *c?) has a solution.



Corollary 1.3.2. Let K be a number field such that p ¢ k, where p = (3 is a
primitive cube root of unity, and set K, = K(p). Then

oWk /K) = [ »-
pI3Zx
e(p/3) odd

In particular, the ramified primes in K./K are those above 3 such that e(p/3)
s odd.

Proof. We have K, = K(v/—3), so we use the theorem with D = —3. We
have DZK = 3ZK = aq2 with

p|3Zx
e(p/3) odd
On the other hand a is coprime to 2 and the congruence z? = —3 (mod 4) has
the solution x = 1, so ¢ = 2Zk and the corollary follows. O

If p is a prime ideal of K5, we will denote by p, any prime ideal of L above p.
By the above corollary, we have e(p./p) = 2 if and only if L # K5 and e(p/3)
is odd, otherwise e(p,/p) = 1.

In the case of cyclic cubic extensions, the result is more complicated, especially
when L # K5. We first need some definitions.

Definition 1.3.3. Let p be a prime ideal of k, p a prime ideal of Ko above p,
p. a prime ideal of L above p. To simplify notation:

o We set p'/? = p if p is ramified in Ky /k (i.e., pZi, = p*), and similarly
pl/2 =y, if p is ramified in L/ Ko (i.e., pZ1 = p2).

o We setr=r(p/p)=1/e(p/p)

o We say that p C k divides some ideal b of K5 (resp., of L) when (pZk,)"
(resp., (pZ1)'/®=/P)) does.

Note that e(p./p) < 2 (indeed, if for instance e(p/p) = 2 then e(p/3) is even so
p./p is unramified by Corollary 1.3.2), so we will never need to define “p'/4”.

Definition 1.3.4. Let @ € (L*/L**)[T] as above, let p be an ideal of k above
3, let p be an ideal of Ko above p, let p, be an ideal of L above p, and denote by

C,, the congruence x3/a = 1 (mod *p?) in L. If this congruence is soluble for
n = 3e(p./3)/2 we set Ay(p) = 3e(p./3)/2+ 1. Otherwise, if n < 3e(p,/3)/2
is the largest exponent for which it has a solution, we set A,(p) = n. In both

cases we set
Aa (p) -1
e(p-/p)

It is clear that A,(p) and a,(p) do not depend on the ideal p, above p, whence
the notation.
In addition, we have the following properties:

aa(p) =
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Proposition 1.3.5. (1) We have 3t An(p), and in addition when e(p,/p) =
2 and Ay (p) < 3e(p,/3)/2+ 1 we also have 21 A, (p).

(2) We have 0 < an(p) < 3e(p/3)/2 — 1/e(p/p) and a,(p)e(p/p) € Z, or
aq(p) = 3e(p/3)/2, which happens if and only if A,(p) = 3e(p./3)/2+1,
in which case it is only a half integer when e(p,/p) = 2.

(3) We have aq(p) # —e(p./p) (mod 3).

Theorem 1.3.6. Let N correspond to o as above, write uniquely aZy = aga2q?
with ag and a1 integral coprime squarefree ideals, and let a, be the ideal of Ko
such that apay = anZy, (see Lemma 1.2.8). Then

3aq Hp\3zk(pZKz)e(p/3)/2H p|3Zs (pZKz)l/Q

_ e(p/3) odd
F(V/E2) = Tl 132, (PZercy )@ (o /001 /e(0/0)

plaa

All these results come from similar results in [18] where we have just replaced

aa(p) by aa(p) = aa(p)/e(p/p)-
Note that [ae(p/p)]/e(p/p) is equal to a when e(p/p) = 2 (recall that in
that case a can be a half integer) and equal to [a] otherwise (in particular when

e(p=/p) =2).

Definition 1.3.7. Let p be an ideal of k, let p be an ideal of Ko above p, and let
p. be an ideal of L above p. Let a be such that 0 < a < 3e(p/3)/2—1/e(p/p) and
ae(p/p) € Z, or a = 3e(p/3)/2. For e =0 or 1 we define h(e,a,p) as follows:

(1) when a = 3e(p/3)/2 we set h(0,a,p) = 0;
(2) when a < 3e(p/3)/2 we set

1 if 6(pz/p) =1,
h(0,a,p) = ¢1/2  ife(p/p) = 2 (hence e(p./p) = 1),
0 if e(p./p) =2 (hence e(p/p) = 1);

(3) we set h(1,a,p) = 2/e(p-/p).
Lemma 1.3.8. Let b= a+ h(e,a,p).

(1) Assume that b < 3e(p/3)/2. Then h(e,b,p) = h(e,a,p), so that a =
b— h(e,b,p).

(2) We have b= 0 if and only ifa =0, e =0, and e(p./p) = 2. In particular,
if e(p./p) = 1 we have b > 0.

Proof. (1). If h(e,a,p) = 0 we have b = a, and h(1,a,p) only depends on
the value of e(p,/p) (and the fact that a < 3e(p/3)/2), so the result is trivial
in both cases. We may therefore assume that ¢ = 0 and that h(0,a,p) > 0,
so that a < 3e(p/3)/2 and e(p./p) = 1 or e(p/p) = 2, hence by definition
h(0,a,p) = 1/e(p/p). Since by assumption a < 3e(p/3)/2 — 1/e(p/p) it follows
that b < 3e(p/3)/2, so h(e,b,p) = h(e, a,p) as claimed.

(2). Evidently b = 0 if and only if a = 0 and h(e, a,p) = 0, hence h(e,0,p) =
0. Since 0 < 3e(p/3)/2, by definition this is the case if and only if € = 0 and
e(p=/p) = 2. O



Lemma 1.3.9. Let p be a prime ideal of k and denote by Dy the congruence
23/a =1 (mod *p*) in L. Ifa is as in the above definition, then a,(p) = a if and
only if Dy, is soluble for k = a+ h(0,a,p) and not soluble for k = a+ h(1,a,p),
where this last condition is ignored if a + h(1,a,p) > 3e(p/3)/2.

Proof. Since o € (L*/L**)[T) it is clear that the solubility of the congruence
Cy, for p¥ is equivalent to that for 7(p.)* or 7(p,)* in all cases. Thus the
solubility of Dy, is equivalent to that of Cy when e(p,/p) = 1, and to that of
Car, when e(p,/p) = 2.

Assume first that a = a,(p) = 3e(p/3)/2. By definition, this is equivalent
to the solubility of the congruence Cj for k = 3e(p./3)/2 = 3e(p/3)e(p./p)/2,
hence to that of Dsc(,/3)/2 = Da whether e(p./p) = 1 or 2, proving the result
since h(0,a,p) = 0 in this case.

Assume now that a < 3e(p/3)/2 and that e(p./p) = 1, so the solubility of
Dy, is equivalent to that of Cj. In this case A, (p) = an(p) + 1, 50 an(p) = a is
equivalent to the solubility of D, and the nonsolubility of D, 2, proving the
result since h(0,a,p) = 1 and h(1,a,p) = 2.

Assume that a < 3e(p/3)/2 and that e(p,/p) = 2. The congruence Dy, is
now the same as the congruence Cy;. By Proposition 1.3.5 we have A,(p.) =
2a4(p) +1 < 3e(p,/3)/2, with a.(p) € Z, which means that the maximal m for
which C, is soluble is odd. Thus a,(p) = a means that Cy,4; is soluble and
Coqt2 is not, so equivalently that D, = Cy, is soluble and Dy = Cauqo is
not, so h(0,a,p) =0 and h(1l,a,p) = 1.

Finally assume that a < 3e(p/3)/2 and that e(p/p) = 2. The congruence Dy
is equivalent to the congruence Coy,. Since a,(p) can be a half integer, the choice
h(0,a,p) = 1/2 and h(1,a,p) = 1 that we have made finishes the proof. O

Remark. We have used in an essential way the fact that A, (p) is odd when
e(p./p) =2 and A, (p) < 3e(p./3)/2. Note that this result is rather subtle, and
follows from the study of higher ramification groups. On the other hand, it is
not necessary to use the fact that 31 A,(p), contrary to what was done in [18].
The resulting formulas, which are of course equivalent, are simpler.

1.4 The Dirichlet Series

Recall that f(N/K2) = f(K/k)Zg, for some ideal f(K/k) of k, and that this
result also comes from the computation of higher ramification groups. In par-
ticular, N, /o (F(N/K2)) = Ny o(F(K/k))¥=¥]. To avoid having both the norm
from K5/Q and from k/Q, and to emphasize the fact that we are mainly inter-
ested in the latter, we set explicitly the following definition:

Definition 1.4.1. If a is an ideal of k, we set N(a) = N, g(a), while if a is an
ideal of Ko, we set

Ma) = N, g a) /14

This practical abuse of notation cannot create any problems since if a is an ideal
of k we have Ma) = MaZg,). For instance, since f(N/K3) = f(K/k)Zk,, we
have Mf(K/k)) = MF(N/K3)). We emphasize that unless explicitly written
otherwise, from now on we will only use the above notation.

9



Definition 1.4.2. The fundamental Dirichlet series is defined by

1
=5+ 2 KR

KeF(K:

1\9\»—*

where N is as in the preceding definition.

By the fundamental bijection (Proposition 1.2.7), we have

1
Z Z NH(N/K2))s

(110,(11)€J ’U,ES3(L)[T

where J is the set of pairs (ag, a;) of coprime integral squarefree ideals of L such
that aga? € (I/13)[T] and aga? € CI(L)?, and where f(N/K3) is the conductor
of the extension N/Kj corresponding to the triple (ag, a1,@).

Indeed, the addition of 1/2 in the definition of ® corresponds to the excluded
triple (Zr,,Zr,1), and the factor 1/2 in the above formula corresponds to the
equivalence relation between triples.

Thus, replacing f(IN/K32) by the formula given by Theorem 1.3.6 we obtain

= L S (5)
‘I)(S) T 9. 3(3/2)[k:Q]s H pl3Z, N(p)s/g Z N(Cla)s’ where
e(p/3) odd

Seo(s) = 3 [ M) weon@eto/os/etolo)

u€eSs(L)[T] p|3Zk
plaa

(ag,a1)eJ

and where «q is any element of L such that there exists an ideal gy such that
aoalqd = aoZy, and ag € (L*/L**)[T]. Note that it is possible to require this
additional property thanks to Proposition 1.2.7.

Definition 1.4.3. For ag € L* and b an ideal of L we introduce the function
fao(b) = [{m € S5(L)[T], 23 /(apu) =1 (mod *b)  soluble in L},

with the convention that fu,(b) =0 if bt3v/—3.

Let p; for 1 < i < g be the prime ideals of k£ above 3 and not dividing a,, (in
the sense of Definition 1.3.3), set e; = e(p;/3), and for each i let a; be such
that 0 < a; < 3e;/2 — 1/e(p;/p;) with aze(p;/p;) € Z (where as usual p; is an
ideal of Ky above p;), or a; = 3e;/2. Note that since p; is above 3 we have
e; =e(pi/3) > 1.

Thanks to Lemma 1.3.9, an easy inclusion-exclusion argument shows that

Z 1= Z (1) fag ]___[ (piZx,)" |,

ueSs(L)[T) (e1,...,e4)€{0,1}9 1<i<g
Vi, auou(pi):ai

where b; = a; + h(e;,a4,p;), and since we have set f,,(b) = 0 when b ¢t
3v—3Zr, we may assume that 0 < b; < 3e;/2. Note also that e(p;/p;)b; €

ZU{3e(pi/3)/2}.

10



From Lemma 1.3.8 it follows that if we let B be the set of g-uples (b1,...,b,)
such that 0 < b; < 3e;/2, bie(p;/p;) € Z U {3e(p;/3)/2}, then we have

Sool6) = 3 [T M)t testue b /mle/elb /()R gy (H(piZKf)'

(b1,...,bg)€B  1<i<g i
(e1,...,64)€{0,1}7

Lemma 1.4.4. We have

Seols) = D fao(H <pz-ZK2>“) [T (Moot ma (i, ) 5))
)eB

(b1,..bg 1<i<g 1<i<g

where Q((pZx,)", s) is defined as follows. Sete = e(p/3), p an ideal of Ko above
p and p, an ideal of L above p, and define s’ = s/e(p/p). Then:

e ife(p./p) =1, (hence e(p/3) is even) we have

0 ifb=0,
by )1/ M) ifb=1/e(p/p) ,
Q)" =4 1) M) — 1/ M@)™ 7 2/e(p/p) < b < 3e/2 — 1/ep/p)
1—1/Np)* ifb=3e/2.

o ife(p./p) =2 (hence e(p/p) = 1) we have

1 ifb=0,
1—1/NMp)*  if1<b<3e/2-3/2,
—1/ Mp)* ifb=3e/2—-1/2,

1 if b=3e/2.

Q((pZKz)ba S) =

Proof. Since the indices are independent, it is enough to prove the formulas
for g = 1. In this case we have

Sy (s) = 3 Mp)lacte/pls/ew/p) £ ((pZK2)<a+h<o,a,e)> )>
0<a<3e/2—1/e(p/p) or a=3e/2
ae(p/p)E2U{3e(p/3)/2}

_ 3 Mp)lactw/p)s/ete/p) f <(pZK2)<a+h(La,e>>) ,
0<a<3e/2—1/e(p/p) or a=3e/2
ae(p/p)€ZU{3e(p/3)/2}

Thus,
Sl = N ey (W) O

0<a<3e/2—1/e(p/p)
ae(p/p)€L

+ M) fo, (0,7

B ) ND)™ foy ((pZKQ)(a-i-h(l,a,e))) 7

0<a<3e/2—1/e(p/p)
ae(p/p)€L

11



so by an easy change of variables

SO(O(S) = Z N(p)(bihO)Sfao ((pZKg)b)
ho<b<3e/2—1/e(p/p)+ho
be(p/p)€EL

—i—/\f(p) [3@/2]Sfa0 ((pZK2>3e/2)

- > Np) "% o, (0Zk,)")
h1<b<3e/2—1/e(p/p)+h1
be(p/p)€Z
where hg = 1,1/2,0 if e(p./p) = 1, e(p/p) = 2, e(p./p) = 2, respectively, and

hy = 2/e<pz/p)'
Looking at the coefficients of fo, ((pZx,)?) Mp)[te®/p)1s/e(®/P) gives the for-
mulas for Q((pZ,)?, s). O

Definition 1.4.5. (1) We let B be the set of formal products of the form
Hpilgzk(piZKQ)bi, where the b; are such that 0 < b; < 3e(p;/3)/2 and

e(pi/pi)bi € Z U {3e(pi/3)/2}.

This is the same as taking

I o I e 11 P

pi|3Zk, pil3Zk, pil3Zx,
pi inert in Ka/k pi split in Ka/k pi ramified in Ko /k

in other words, the product of prime ideals p of Ko above 3 with exponents
b such that 0 <V < 3e(p/3)/2, ¥ € ZU{3e(p/3)/2}, and which are stable
by T2.

(2) We will consider any b € B as an ideal of Ko where, by abuse of language,
we accept to have half powers of prime ideals of Ko and we will set b, =
bZy,.

(3) 1f o =11, 32, i € B, b = e(pi/pi)bi, we set

IA6) = T M) ™1

pilb

We would now like to set

b= ][ #iZx)" €B

1<i<g

and rewrite the formulas as functions of b instead of the b;, but in doing so we
would lose the informations about the set of the p; (in particular we lose the
information about the p; for which b; = 0).

Thus, we let E = {p1,...,ps} C {p| 3Zy} to be the set of (distinct) prime
ideals of k above 3 not dividing a,, so that

Aq = H (p'LZI(Q)T1 3
pingk
pi¢E
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where as usual r; = 1/(e(p;/pi)). We obtain

Sao (s 1 ,
Z N(ai))s - Z Z Mag)® Z fao H (piZk,)"

(ap,a1)eJ EC{p|3Z} (ap,a1)€J (b1,...,bg)EB 1<i<g
{pI3Zk ptaa}=E

Z bie(pi/pi)ls/e(vi/pi
11 (QUpiZx,)% , s) N(plbie®i/p1s/ewi/pyy

pi€EE
so that
So. (s . | .
2 N?;()lz Y > W I QUwizw,)s) Y f&’(a())
(ag,a1)€J a EC{p|3Z,} beB piCE (aar e N
Plo=per {p|3Zy,ptac }=E

It is easy to see that when b, = 0 we get

b, +_ J1 ife(p/3)isodd
QW™ s) = {O if e(p/3) is even,

so when e(p;/3) is odd we can omit the corresponding p; in the product, and
when e(p;/3) is even we get a zero term.
Thus we can write

Sag (s . )
2 N(ai))s = 2 ) N6 ] QUZie,) "™, 5) -

(ag,a1)€J EC{p|3Z} bes plb
plb=peE
pEFE and e(p/3) even =p|b

Z fao(b)
(ao,a1)EJ N(Cla)s
{p|3Zy,ptan }=FE

= 3" WO Rils) > O

beB EC{p|3Z} (ap,a1)€J
plb=pEE {p|3Zk,ptaa}=E
ptb and e(p/3) even =p¢gE

where Py(s) =[], Q((pZk,)"»™®), s), so that

Sao(s) _ s s fag(b)
(007%1:)6] Maa)? - bez;” I_N-I(b) e (a()%l:)EJ Maa)* .
(aq,b)=1

ptb and e(p/3) even =pla,
Now we have the following lemma.

Lemma 1.4.6. With the present notation, we have

(@,3Zr,) =[] »-

PI3Zxk,, pib
e(p/3) even
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Proof. Both sides being squarefree ideals of Ky dividing 3Zg,, we must
show that each prime ideal above 3 dividing one side divides the other. In one
direction this is clear: if p 4 b and e(p/3) is even then p | a,. Conversely, let
p | a, above 3. Since (a,,b) = 1 we already know that p 1 b. In cases (1), (3),
and (4) we have p € Ky so e(p/3) = v,(3) = 2vp(1 — p) is even. In cases (2) and
(5), if e(p/3) was odd, then by Corollary 1.3.2, p would be ramified in L/Kj,
and in particular would not be split, so that p ¢ D3, contradicting Proposition
1.2.10, and proving the lemma. O

Thus, we set the following definition:

Definition 1.4.7. (1) For b as above we define

“o)= [ »-

PI3Zkcy s pib
e(p/3) even

(2) We set o3 =]],ep, P-

The above lemma states that (a,,3Zk,) = t°(b), and it is clear that if this
is the case then a, is coprime to b and that p 1 b, e(p/3) even implies that
p | an. Furthermore, again by Proposition 1.2.10 since p | (a,,3Zk,) implies
that p € D3, we must have t¢(b) | 93. Note that by contraposition, this is clearly
equivalent to 03 | b, where 05 = [[,3z,, pgps P-
e(p/3) even
Thus we obtain

Sao(s) _ S fao(b)
Z N(ﬂa)s - Z [N](b) Pb(s) Z N(aa)s'

(ag,al)EJ ebGB (ao,a1)€J
t(b)[os (aa,3Z5, )=1°(b)

1.5 Computation of f, (b)

Recall that b, | 3y/—3 and that the a; are coprime squarefree ideals such that
apa? € (I/I3)[T) and aga? € CI(L)3. We have also set aga?qi = apZj with
ag € (L*/L**)[T]. Changing qo and ag if necessary, we may assume that aq is
coprime to b, although this is not essential for the proof. Finally, recall that

fao(0) = [{u € S3(L)[T], #* = apu (mod *b,) soluble in L}

)

where we have replaced the congruence 23/(apu) = 1 (mod *b,) by the above
since we assume «q coprime to b, .
Finally, recall that for each b € B we have b = m»(b).

To compute f,,(b), we will proceed by a series of lemmas.
Definition 1.5.1. Set
Se(L)[T) = {w € S3(L)[T), =3 = u (mod *b.) soluble} ,

where u is any lift of W coprime to b,, and the congruence is in L.
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Lemma 1.5.2. If f,,(b) # 0 then f,,(b) = |Se(L)[T]].

Proof. Indeed, assume that 23 = agug (mod *b,) for some uy € Ss(L)[T].
The congruence z° = apu (mod *b,) is thus equivalent to (z/x¢)® = (u/uo)
(mod *b,), in other words to u/ug € Sp(L)[T], so the set of possible @ is equal
to UpSp(L)[T], whose cardinality is |Se(L)[T]]. O

Lemma 1.5.3. Let ag, a; as in condition (1) of Proposition 1.2.7. Then fo,(b) #
0 if and only if aga? € Cly(L)3.

Proof. The condition aga? € Cly(L)? is equivalent to the existence of q;
and 5 = 1 (mod *b.) such that aga?q} = 31Zr. Assume first that u exists,
so that 23 = apuf for some 3 = 1 (mod *b,) and uZj = q*. It follows that
apa?q3q® = aguZy = (x3/B)Z1, so we can take q; = qoq/xo and 31 = 1/3 =1
(mod *b,). Conversely, assume that aga?q} = ($1Z; with $; = 1 (mod *b,).
Since aga? € (I/I?)[T], we have t(B2) = v3 for some v € L*. It follows that
aoZr, = apalqd = B1(qo/q1)3. Thus, u = ag/Bs is a virtual unit, and u’ is a cube
of L since this is true for oy and for 3. Thus u € S3(L)[T] and 1* = 8 = ap/u
(mod *b.), s0 fa,(b) # 0, proving the lemma. O

Remark that when we suppose aga? € Clp(L)? we have automatically aga? €
CI(L)3, so we just need to suppose apa3 € (I/13)[T].
Lemma 1.5.4. Set Zy = (Z1/b,)*. Then

((U(L)/U(L)?*)[T][(Cle (L)/Cly(L)*)[T]]
| :

1Se(L)[T]| = (Zo/Z3)[T)]

In particular
|S5(L)[T] = [(U(L)/U(L)*)TNI(CUL)/CUL))[T]| -

Proof. Since this is now standard (see [12] and [18]) we only sketch the proof.
From Lemma 1.2.6 we have the exact sequence of F5[T]-modules
U(L)
—
U(L)?

— S3(L) — CU(L)[3] — 1,

Taking the kernel by T thus keeps exactness, so we deduce that
|S5(D)[T] = [(U(L)/UL))TICUL) BT -

Since T has order dividing 4, it is coprime to 3, so it is well-known that the
finite F3[T] modules CI(L)[3] and CI(L)/CI1(L)? are isomorphic, so in particular
(CU(L)[3)[T] =~ (CI(L)/CI(L)*)[T), proving the second formula of the lemma.
For the first, we have the exact sequence of F3[T]-modules

Zy Cly(L cI(L)
73 Cly(L®  CI(L)®

—1

1 — SB(L) — S3(L)

)

from which it follows that

_ 1Ss(D)[TN[(Cle(L)/Cly (L)) [T]]
|(Zo/Z)[TN[(CUL)/CUL))T|

|6 (L)[T]]
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giving the desired formula after replacing |S5(L)[T]| by what we have computed
above. O

The quantity |(Cly(L)/Cly(L)?)[T]| will in fact disappear in subsequent com-
putations, and in any case cannot be computed more explicitly.
The quantity |(U(L)/U(L)3)[T]| is given by the following lemma.
Lemma 1.5.5. For any number field K, denote by rks(K) the 3-rank of the
group of units of K, in other words rk3(K) = dimy,(U(K)/U(K)?), so that
|U(K)/U(K)?| = 3.

(1) With evident notation we have

_JnE)+r(K) -1 ifp¢ K,
ha(K) = {n(K) i) ipek.
(2) We have |(U(L)/U(L)*)[T]| = 3"V), where
rks (k) in cases (1) and (4),
r(U) = ¢ tk3(L) — rks(k) in cases (2) and (3),

rk3(L) + rkg(k) — rks(K2) — rks(k,)  in case (5).

Proof. (1) is clear from Dirichlet’s theorem, so let us prove (2). Case (1) is
trivial, and it is immediate to see that in case (4) we have (U(L)/U(L)*)[T] =
U(k)/U(k)3. For cases (2) and (3), we have the exact sequence

Uk U UK

YO T U UK

[TQ+1]—>17

where the rightmost nontrivial map is induced by u — 7mo(u)/u, as well as the
exact sequence

U(K>) U(L) U(L
UK.)?  U@L)?P U3

which enables us to conclude. Finally, for case (5) we have

1— [r+1] —1,

1 g(%))g 72+ 1] — g((LL))B 7+ 1] — UU(<LL)L rtlm 1] —1,
and
U(k,) U(L) U(L
1— U(kZ)S — U(L)3 — U(L)3 [ro+1] — 1
so we can conclude. O]

The last quantity that we need to compute is |(Zy/Z2)[T]|.

Lemma 1.5.6. Assume that b is an ideal of B, stable by 7o and such that
b. | 3v/—3, and define
cz = H pL’UPz(bZ)/?’] .

p-CL
p2|b
Then
Cx
(/201 = |17
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Proof. This has also been proved in a slightly different context in [18], but
again for completeness we sketch the proof. We first claim that we have the

exact sequence
1+c,

—
1+b,

where the map to Zg is of course cubing. Indeed, first note that if = € ¢, then
(14+2)* =1+3x+32%2+2% =1 (mod b,) since 2° € b, by definition of ¢, and

vp. (32) = e(p=/3) + vp.(02)/3 = vp. (b2)

since b, | 3v/—3, so that (14 ¢,)/(1+ b,) is in the kernel of the cubing map.
Conversely, assume that 2% = 1 (mod b.), so that H0§j§2(x_pj) € b,. Thus for

1

—’Zb_>Zg_’1;

any prime p, | b, we must have vy, (z—p’) > v,_(b,)/3 for at least one j, so that
for that j we have v,_(z—p?) > v,_(c,). Since vp_(c.) < e(p,/3)/2 = vy, (1—p),
it follows that for all j we will have v,_(z—p’) > v,_(c), and in particular z = 1
(mod c,).

Thus the F3[T]-modules (1 + ¢,)/(1 + b,) and Zy[3] are isomorphic, and
since 2 and 3 are coprime once again the latter is F3[T]-isomorphic to Z,/Z3, so
in particular (Zy/Z3)[T] ~ ((1 4 ¢.)/(1 + b.))[T]. The use of the Artin-Hasse
logarithm and exponential maps (here simply z —22/2 and = +22/2) shows that
(I14¢,)/(1+ b,) is isomorphic to the additive group ¢, /b, so we conclude O

Lemma 1.5.7.
|c2/b| in case (1)

|c./b.| .
in cases (2) and (3)
_ J (N k)/(b.NE)|
(G Z)TN = (e ). 0 1) in case (4
le./b.|[(c. N k)/(b. N k)| in case (5)
[(c. N K3)/(b, N K2)||(b.NEk.)/(c. NE.)| '

Proof. Note that

¢, N L
b,NL™

[ )
—_ —]_ =
bz[ ]‘

b

where 7/ € {7,7} and L™ is the subextension of L stable by 7.
Moreover, we have the exact sequence

ci[7"—1]—>——>—[7”~¢—1]—>1,

b, b. b,

so we can conclude. O

1 —

Lemma 1.5.8. In case (5) we have

(Zo/2)IT)| = T] Mp) @5 te0m)

pCk
p|b

where x(b,p) = r3(20)/3 if e(p./p) = 1, x(b,p) = r3'(b)/3 if e(p./p) = 2 and
b < 3e(p/3)/2, x(b,p) = —1/(3r3(2b)) if e(p/p) = 2 and 2b Z 0 (mod 3), and
r3(b) is the class modulo 3 of b in {0,1,2} and r3'(b) is the class of b modulo 3
in {—1,0,1}.
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Proof. By multiplicativity it is enough to prove the formulas for a prime p
of k dividing b.

e If e(p,/p) = 1 then there is no ramification in L/k, so b, = sz“,plz’,
€, = sz‘b pr/g], and similarly b, N Ky = pr pb, . NKy = lebp[b/:ﬂ
b.Nk = lebpb’ Nk = leb p(b/ﬂ b.Nk, = Hp/\b,p/ckz plb, ¢, Nk, =
Hp,‘b p'[0/31,

Moreover N7, ,q(pZ) = Mp)* and N, jo(pZk,) = Ni. jo(0Zi,) = Np)?.

So we get

|(Z6/Z)IT]| = Mp)*~ T/ = Np) 20/3 47050,

o If e(p./p) = 2 then p is ramified in L/K>, e(p/3) is odd and so p is also
ramified in &, /k.

We have b, (1K = [T, b1, -0 K = [T, 0 /%1721, b0k = [T, p1?,
C n k = Hp|bpﬂ—2b/3-|/2-| and bz N k‘z = lelb PlQb; C. n kz - lelb p/|—2b/3-|'

JT/OW’ Ni1jo((PZr)'?) = Nk, jo(0Zk,) = Mp)?* and N, jo((pZx.)'/?) =
(p)-

So we obtain
(Zo/Z)[T)| = N(p)%f(26/317(b1+[f2b/31/ﬂ = Mp) [b]—=LI26/31/2]
In particular, when b = 3e(p/3)/2 we obtain
|(Zo/Z)IT]| = M),
and if b < 3e(p/3)/2, then b € Z and we obtain
|(Zo/Z)T)| = Np)*~ T/E12) = N(p)?0/3 s @13,

e When e(p/p) = 2 then p is ramified in K5/k and it can be ramified or not
in k,/k depending on e(p/3) parity.
We have b, N Ky = [, p*, . N Ko = [],,, o1, 0. 0k = ], "],
. Nk= lebpmb/:ﬂ/z] and b, Nk, = Hp% Nk, = HP’\b p/(zb/:ﬂ
if e(p/3) is odd, otherwise we get b, Nk, = Hp/lbpxm and ¢, Nk, =
Hp’\b plﬂ%/?’]/ﬂ‘
So we have Ny q((pZ1)"/?) = Mp)*, Nic,jo((pZx,)"?) = Mp) and
NkZ/Q(pZ,ZZ) = Mp) if e(p/3) is odd, otherwise Nj,_,o(pZs.) = Mp)>.
So if e(p/3) is odd we obtain

|(Z/2Z) [T = N(p) 1= T120/3172]

and if e(p/3) is even we have

|(Zb/Z;°,’)[T]| = Np) [b]—L2b/3]/2]
which leads to the formulas, after some calculations. O

This finishes the computation of f,,(b).
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1.6 Final Form of the Dirichlet Series

We can now put together all the work that we have done. Recall that we have
computed |U(L)/U(L)*[T]| in Lemma 1.5.5 and |(Z,/Z¢)[T]| in Lemmas 1.5.7
and 1.5.8. Moreover, B and [N are defined in Definition 1.4.5 and Py(s) =
[L6 Q((pZx,) "), s), where Q(pb, s) is defined in Lemma 1.4.4. Finally, recall
that we have

3t Y K/k))

KeF(K>)

Theorem 1.6.1. Set 03 = HpeD3 p, and for any ideal b, set for simplicity
Gy = (Cly(L)/Cly(L)?)[T). We have

[(U(L)/U(L)*)[T]]

" 236U T] sz, Mp)*?
e(p/3) odd
[N-Kb) ° Py(s) .
é (N(te(b))) ((Zo/Z3)[T))| ZF(‘LX, ),
t(b)[03 o
where
2 1
Foxs)= [[ 2 JI v II (1+—=) I (1-—=).
plee(b) plee (b) pED/(X)( Mp) )pED\D,(X)( Np) >

p€D3(x) pED3\Ds’(x)

where in cases (1) and (4), D'(x) (respectively Di(x)) is the set of p € D
(respectively p € D3 ) such that x(pZr) = 1, while in the other cases it is the set
of p € D (respectively p € Ds) such that x(p.) = x(7/(p2)) if PZr = p.7'(p.),
T e{r e} or x(p.772(p2)) = X(7(p2)72(p2)) if pZL = p=7(p2)T2(p2)TT2(p2).

Proof. We have shown above that

1 Sao(8)

D(s) = : ol
2 . 3(3/2)[kQ]5 H p|3zk7 N(p)S/Q (a()%;)e‘] N(a(x)s

e(p/3) odd ’

where J is a suitable set of pairs of ideals (ag, a1), and we have computed that

Sa(8) _ s fao(b)
Z ./\/'(Cla)‘g - Z (N-‘(b) Pb(s) Z N(aa)s'

(ag,a1)eJ ngB (ag,a1)eJ
e (0)]0s (a0 8Z1cy)=* (6)

where Py (s) is given by Lemma 1.4.4. In the preceeding section we have seen
that f,,(b) # 0 if and only if aga? € Cly(L)? (so we only need to assume
condition (1) of Lemma 1.2.8), and in that case that

((U(L)/U(L)*)[T]]|(Cle(L)/Cle (L)*)[T]|
(Zo/Z)IT]] '

Set Gy = (Cly(L)/Cly(L)3)[T). Let ag and a1 be as in condition (a) of Proposi-
tion 1.2.7. We have aga? € Cly(L)? if and only if x(apa?) = 1 for all characters

fao(b) =
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X € é\b The number of such characters being equal to |Gy|, by orthogonality
of characters we have

\(U(L)/U(L)*)[T] .
2 362FU | sz, Mp)™/?2
e(p/3) odd

INJ0)Pa(s) .
2z 2 T

O(s) =

beB
v (b)[03 XETe

with

N x(aga?)
H(bv Xa S) - Z , N )
(ao,al)GJ
(aa,3ZKy)=1°(b)
where J' is the set of pairs of coprime squarefree ideals of L, satisfying the
condition (1) of Lemma 1.2.8, with no class group condition.

Thus
_ x(x°(b)) 3 x(a) 3
o= N(te(b))s (a,3Z1)=1 N(Cl)s ailace(b), a1€J”X(a1) 7

a squarefree
T(a)=72(a)=a

where J” is the set of squarefree ideals a; such that a; is stable by 7 in case
(4), a;7'(a1) = ar®(b) for each nontrivial 7’ € {7, 72} in the other cases.
Let us define G(x, p) by:

1+ x(pZr) in cases (1) and (4), and otherwise :
Gxp) = 4 x(p2) + x(7'(p2)) when pZy, = p.7'(p-)
X(p=772(p2)) + X(T(p2)T2(p2))  When pZp = p.7(p.)72(p2)T72(p2).

Since a is coprime to 3, by multiplicativity we have H(b, x, s) = S1.52 with

Sl:j\m H G(x,p) and

0)
_ x(a) _ x(Z1 )G p)
So = <a,3zZL)—1 N(a)sHG(x,p)g<1+ Ny > :

a squarefree
T(a)=72(a)=a
where D is given by Definition 1.2.9.

Now, x takes only values 1, p, and p?, so looking at the possible values for
G(x,p), in cases (1) and (4) we have just to distinguish wheter x(pZr) =1 or
not, while in the other cases we need to take also into account the values of
X(p2)s x(7'(p2)) or x(p-772(p2)), X(7(p2)72(p-)), so we obtain

1
S =Mewy U2 1L o

ple(b) ple(b)
pEDL(x) PED3\Ds’ (x)

2o I (o) T 0 )

p€ED’(X) p€D\D’(x)
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From the previous theorem we obtain :

Theorem 1.6.2. In cases (2) and (3), set K} = L, and in all cases denote by
V(KL /k) the relative discriminant of K /k. Let us define

[(U(L)/U(L)*)[T]]

= 2. 3(3/2)[k:Q] H pl3Z N(p)1/2 ’
e(p/3) odd

C1

. VIO o) oo
2= 2 Ao (G2

beB

(b0
032};[’€(1—A/5))2+A/57)3>p|1;2[k (1+./\/?p)>1 ;
“ ®g<l_m> pb(gg/k) <1_N(p;+1> |

where w(t®(b)) =3, 1-
e In cases (1) and (4), around s = 1 we have

_ C(Ky/k)  C(K3/k)D(Ks/k)

P _ 1
(5) (s —1)2 s—1 +0),
with constants
C(K2/l€) = 618203(Ress=1 Ck(s))2 and
!
D /) = 2.+ iy G where
0 L Gr(s) !
G(s) = Ch(s)2 and vy, = ll_)ni (Ressz1 C(s) s—1)7
and where lims_,; G'(s)/G(s) can easily be computed more explicitly if

desired.

In addition, using the notation given at the beginning of this chapter, as
X — o0, for all e > 0 we have

M(Ks/k,X) = C(Ka/k)X (log(X) + D(K3/k) — 1) + O(X**®), . (1.1)
for some oo < 1 (see Section 1.7).
e In cases (2), (3), and (5) we have
_ C(K3/k)
D(s) = o) + O(1),
with
C(Ka/k) = crcaca(Ress—1 iy (s))
and for all € > 0 we have
M(Ky/k,X) = C(Ky/k)X +O(X*T¢), (1.2)

for some oo < 1 (see Section 1.7).
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Proof. Tt is easy to see that when x is not the trivial character, the functions
F(b,x, s) are holomorphic for Re(s) > 1/2, so do not occur in the polar part
at s = 1. On the other hand, since t¢(b) | 03, for x = 1 we have F(b,1,s) =

e 2
2¢(=°(0)) P(s), where P(s) = HpeD (1 + J\/(p)s)’ so in cases (1) and (4) we get

W T (1 5 * 37

so we obtain C'(Kz/k) = c1cacz(Ress—1 (x(s))?. Now to compute D(Ky/k) we
remark that

P(s) =

P’ 2
o (49+.2,).
and that
> 2(s)
s—1 Cr(s)
where R = Resg—1 (i(s), so

+ 2%+ O((s — 1)),

D(s) k(s

DU/ — tin (@’@) 21(5) +2%) |

Now we remark that

D'(s) _ 2G(s) _ G'(s)

o(s)  Gls)  G(s)

= & so we obtain
where G(s) = B bt
G'(s)
G(s)

D(Ksy/k) = linﬁ + 29 .

In cases (2), (3) and (5) we obtain with evident notation

3 2
CKé(S)H(%)Zl <1 - N(p)2s + N(p)3s)
(1f1/N(p)S)_1H(M) A=)

m —

P(s) =

H(M)

p

so the formula for the polar part of ®(s) follows after an immediate computation,
with ¢4 given by

o= I (- xor wor)

COm

Indeed, note that since in cases (2) and (3) we have set K} = L, by Proposition

1.2.10 the condition p € D is equivalent to (%) =1.
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Now we have evidently 1/(x(2) = P_1PyP; with

1
Pg K,H (1 N(p)2> ’
(27/%6):6
p
so replacing P_; by ((x(2)PyP1) ™! in the formula for ¢4 gives the formula of the
corollary.

Finally, since our Dirichlet series have nonnegative and polynomially bounded
coefficients, the asymptotic results follow from a general (and in this case easy)
Tauberian theorem. For the error term O(X®) with an explicit « < 1, we refer
to the following section. O

Remark. The asymptotic (1.1) for kK = Q (corresponding to cyclic cubic fields)
is due to Cohn [21], and over a general number field to Cohen, Diaz y Diaz and
Olivier [18]. The equation (1.2) over Q is certainly also in the literature (at
least its main term), but over a general number field it seems to be new.

1.7 Error term of the asymptotic formula

The aim of this section is to compute the error term in the asymptotic formulas
(1.1) and (1.2).
First of all, we need some properties of the Dirichlet series ®(s).

Lemma 1.7.1. For the Dirichlet series ®(s) = > -

o1 Gnn”° we have |a,| < nf,
for every e > 0.

Proof. This can be proved just referring to [27, Lemma 6.1], who prove the
bound for the number of cubic extensions with fixed norm of the discriminant.

We give a direct proof for the convenience of the reader.

The only part we need to bound is F(b, x, s) and in particular we need to
bound the Dirichlet coefficients b,, of

peD’(X)
but for every n we just need to count the number of distinct primes (€ Z)
dividing n (that is w(n)) and for each one of those we will have at most [k : Q]
prime ideals of k£ above it, so we obtain

|by| < 20(Wk:Q

and since w(n) < (1 + o(l))log)ﬁ)gn (for n — o0) ([51, §5.3]) we obtain
|bn] < n®, Ve >0,

but |ay|/|bs| is bounded, and we conclude that |a,| < n®, for all € > 0. O
So ®(s) is absolutely convergent for Re(s) > 1.

Let us define S(z) = 3, ., a, and S*(z) = Y., _, an + a,, where a, is
defined to be 0 if € R\ N (z > 0).
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Our aim is to compute S(x), for this we will need some complex analysis results.
Let us fix § > 0, set k =1+ 4, kg = 1/2+ 4. By Perron formula |51, §2.1,
Théoréme 1], we have
1 K+100 |
S*(z) = — ) SsT ds, >0
@ =g [ Bl @>0)
and the effective formula [51, §2.1, Théoréme 2]

1 K+iT L & |an|
= — S - r > M
S0 = g2 [ _p 209" dHO(x > o logan ) 72

Let T’ be the border of the rectangle of vertices kg — i1, ko + i1, k + iT,
Kk —1T.

S(z) = — </F ®(s)x*s tds — B(T) — B(-T) — C) +0(4),

21

where

o 0 |an|
A= an(1+T| log(x/n)|)

n=1

K+t
B(t) = / ®(s)z®s tds
Ko+t

rko+iT
C = / ®(s)xs™ ds.

o—iT

€ ®(s)x®s 'ds = Rese—1 <<I>(s)m > .

2me Jr s

We have

So we obtain o .
S(x) = Ress=1 <(?x> +E,

where the error term FE is given by

E—=E@G.T) = —%(B(T) +B(~T) + C) + O(A).

To bound this error term we will need to bound ®(s) polynomially in Im(s) in
the strip £ < Re(s) < 1. We will be content with the simplest such bound,
namely the convexity bound (Phragmén-Lindel6f’s principle), but it is possible
to improve it for certain classes of base fields k.

By [38, (5.20)], we have

1
z+ LC(s) <€ a(Gr8) 1724, forall e >0, (1.3)

where in our case the analytic conductor q(Cg, s) is less than |dy| (|t|+4)#9 [38,
§5.10, p. 125]. The implied constant only depends on the field degree and e.
In particular for |¢| > 1 we have

Crls) < [t (D%, s = o +it, (1.4)

for some pr(o). We can for instance use ug(o) = (1 — o)[k : Q]/2, and the
implied constant now depends on the field discriminant and € : the dependence
on the degree is no longer needed by Odlyzko’s bound : [k : Q] = O(log |dk]).
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Lemma 1.7.2. For all s = o + it, % +0<o0<1+44, |t| > 1, we have

|®(s)| < [tMDFe for all e > 0,
where p(o) = 0 for o > 1 and u(o) is conver and decreasing in the strip
0 < o < 1. A possible choice for u is p(o) = 2ug (o).

Proof. We only need to bound |F'(b, x, s)|. When x is non trivial, F'(b, x, s)
is holomorphic for Re(s) > 3, so we just need to deal with the case x = xo
the trivial character. In this case we obtain F(b,1,s) = 2°("(®)) P(s), where

P(s)=1lep (1 + J\f(?n)&‘) o in cases (1) and (4) we get

o Tee (1~ s+ a5
Mo (i)

while in cases (2), (3) and (5) we obtain with evident notation

P(s) =

3 2
Gl gy, (- * o)
H(M) JA=1/ M) H(M):_l (1—1/Np)2) ™"

p /= p

P(s) =

The products in the formula are holomorphic for Re(s) > 1/2, and we can
extend (f; to a meromorphic function in this vertical strip so that

[F(b,1,5)] < |Ciy(s)] < |G (s)]
and we conclude by (1.4). O
Our goal is the following proposition :
Proposition 1.7.3. The error term E satisfies

|E| <c.qp %5, for all e > 0,

where 1 is as in Lemma 1.7.2 and
__
2(1+n(3))

The implied constant only depends on € and the field discriminant.

In order to prove this proposition, we need to bound |A|, |B(+T)| and |C|. We
may assume x > 1.

Lemma 1.7.4. We have

z + ElogT.

A
||<<5T T
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Proof. Let us write A = Ay + A, where A is the contribution of the n in
the interval [1z,2z], and A, is the contribution of all the other n.
For n not in the interval [1z,2x] we have |log(x/n)| > log 2, hence

4 < T Qi an|

2 1o ,
HW=rr & ne

n=1

but now the sum is exactly ®(x) (remember that the a, > 0), which is conver-
gent for k > 1, s0 |A;] <5 &

It remains to deal with the n in the interval [1z,2z].

Let us suppose for simplicity that x is an integer, and let us write n = x + h,
where |h| < .

We have that |log(z/n)| = |log(1+ 2)| > %‘, since ‘wﬂ < 1.

" |an|

- 1
A= o TE Tllog(a/m) <= (22) 2 1+ Tihl/z’

z/2<n<2z —z/2<h<z

where we use & = O(1) and |a,| = O.(n®). Finally

1 1 x
2 1+T|h|/x§202 T AT 2 1T ) g

—z/2<h<lz <h<z 1<h<z/T z/T<h<z
T logT
1+ = .
<1+ T +z T
So |Az| < Flog T, and we conclude. O

Lemma 1.7.5. For all |T| > 1, we have

x K
(n(0) 1)+
BET)| < () T ,

where the implied constant only depends on € and the field discriminant.

Proof. We have

B(t) = / xo+ithU,
,_i o+t

0
hence . J
BO <ea, [ amppor

Ko |

for |¢| > 1.

By convexity pu(o) < u(0) — op(0). So

wo e [z \° W@ -Dtep, (% \"
|B(t)| <c.ay |t] /HO (|t|u(0)> do < |t] Kk “0|(|t|u(0)> .

Since |k — ko| = 1/2, the result follows. O

Lemma 1.7.6. We have

|C| €e.q, xoTH R0+,
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Proof. Now let us estimate

T
C— / 2D (g + it) (ko + it) i dt.
T

Hence X i
dt di
O] <e,a / x| P (ko + it)| — +/ gro|t|p(ro)+e 2
0 Ko 1 |t|
Using (1.3) and ro > 1/2 we obtain
1
Ly dt
/ |P(ko + it)| — <4, 1.
0 Ko
Finally
ko p(ko)+e T dt Koo )+2¢
C <Leap 27T N Le,dy, 7T ,
1
for all € > 0. -

Proof of the Proposition 1.7.3. Thanks to the previous lemmas, we conclude
that the error term

1
E=—5—(B(I)+B(-T) +C) + 0(4)
satisfies
LA T\ p(u(0)—1)+ Ko (ko) +
|E| <56,dy, (T + TlogT) + (TH(O)) s e 4 grohlko)te

Below, we will choose T' = 27 for some 7 > 0. Since x > 1 we can then simplify
xl{
|E| L5,e,ds T + groH(r0)te

The best error term is obtained when we choose

K—K,

0
T = xi+ulso)
recalling that kK — kg = 1/2, we then obtain
|E| <<5,5,dk xa+6a

where 1
R T a () (13)

Since p is decreasing, we have p(kg) < u(1/2), hence

a<h-o— L (1.6)
T 2(1+p(1/2)

We then let 6 = ¢ and the result follows. O

In particular when k& = Q we can take u(1/2) = 1/2, and we obtain an error
term |E| <. x2/3+¢,
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Remark. For £ = Q we used the convexity bound
C(s) < t=o)/ e,

Using subconvexity bounds, for instance ¢(1/2 +it) <. t'/*¢ ([38, page 101]),
we would get better error terms.

Over an arbitrary number field &k the convexity bound gives u,(1/2) = d/4,
where d = [k : Q], so the error term in Proposition

gets bigger, but we still get a power saving in the error term, since we obtain
O(X1=#), for some 3 > 0.

Corollary 1.7.7 (of Proposition 1.7.3).
(1) Unconditionally, the error term is

E g, a7 V@ g il 2 > 0.

(2) Under Lindeldf Hypothesis, the error term is
E <. z'?T foralle > 0.
Proof. The first point follows from Proposition 1.7.3, (1.4) with ug(1/2) =

[k : Q]/4, and p(1/2) = 2u1(1/2). Under Lindel6f Hypothesis, we have p(o) =0
for every o > 1/2. O

In particular, Corollary 1.7.7 holds under the GRH [38, Corollary 5.20]. We
sum up the work of this section in a slightly more general proposition.

Proposition 1.7.8. Let F(s) = > >~ a,n~* be a Dirichlet series which is
absolutely convergent for Re(s) > 1, which can be extended meromorphically to
Re(s) > 1/2 with a pole of order k > 1 at s = 1 and no other pole in the strip
% < Re(s) < 1. In addition, assume the following:

(1) The coefficients a,, are nonnegative, and for all € > 0 we have
ap <K Nt .
(2) F(s) is a function of finite order in the vertical strip + < o <1 : we have
|F(o +it)| << |t|MOFe when |t| > 1, for all e > 0,
where u(1) =0, and p(o) is conver and decreasing in the strip.

(3) The integral
1

|F(o +it)|dt
0

is bounded independently of% <o < % + 6, for some § > 0.
Then for all € > 0, we have

Z an = Ress—1 (F(s) xS) +O(z9)

S

n<x
where
1
a=1—————. 1.7
215 u(1/2) D
Proof. Straightforward from the previous section. O
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1.8 Special Cases: k£ = Q, Cases (2), (4), and (5)

The computations that we have done are not very difficult, and extremely similar
to those of [18], but still they are quite complex, and it is very easy to make
mistakes. In addition, there are many different cases. It is thus essential to
compute some special cases for each. We begin by the simplest for £ = Q, and
since p ¢ k ounly cases (2), (4), and (5) occur.

1.8.1 Case (2): Cyclic Cubic Extensions

This case is classical (see [21]), but we treat it nonetheless. Here Ko = Q and
L = Q(v/=3). By Lemma 1.5.5 we have |(U(L)/U(L)*)[T]| =3, [K>: Q] =1,
and if p3 = \/—3Z, is the unique ideal above 3, the possible ideals b, are p?
for j =0, 2, and 3, with corresponding ideals ¢, equal to Zp, ps, and ps. Thus,
[c./b.|=1,3,9, and |(c,NQ)/(b.NQ)| =1, 1, 3, so by Lemma 1.5.7 we have
|(Zv/Z3)[T]| = 1, 3, 3. Since €(3/3) = 1, t°(b) is always trivial, and we have
respectively [N](6)® = 1, 3%, 32°, and P,(s) = 1, —1/3%, 1. By Definition 1.2.9
we have D3 = (), and D is the set of primes p = 1 (mod 3). Finally, an easy
computation shows that G is trivial for all b, so the sum over x of the functions
F(b,x,s) is always equal to F(s) = [[,=; (moa 3)(1 +2/p*). We deduce that,
with evident notation

3/2(1,3°,3%)(1,-1/3%, 1) 1

(s) = 3% (1.3.3) F(s) = 5(1 +2/3%5)F(s) .

We have thus proved the following:
Proposition 1.8.1. We have
1 1 1 2 2
> s:—+(1+25) 11 <1+s>~
K/Q cyclic cubic f(K/Q) 2 2 3 p=1 (mod 3) p

Corollary 1.8.2. If, as above, M(Q/Q, X) denotes the number of cyclic cubic
fields K up to isomorphism with f(K/Q) < X, for all ¢ > 0 we have

M(Q/Q,X) = C(Q/Q)X + O(X?/3F)  with
_11V3 2
o= )(1 1)

p=1 (mod 3

= (0.1585282583961420602835078203575 . . .

1.8.2 Case (4): Pure Cubic Fields

In case (4), we have Ko = Q(p) = Q(v/—3), so that L = K5, and K/Q is a pure
cubic field, in other words K = Q(&/m).

By Lemma 1.5.5 we have [(U(L)/U(L)®)[T]| = 1, [K> : Q] = 2, and since
ps = V—3Zy, is the only ideal above 3, the possible ideals b = b, are b = p?,
for 0 < j < 3 (this time including j = 1), all of course stable by 7o, with
corresponding ideals ¢ = ¢, equal to Zy,, ps, ps3, and p3. Thus by Lemma 1.5.7
we have |(Zy/Z3)[T]] = (. N Q)/(b, N Q)| = 1, 1, 1, 3. By Definition 1.2.9
we have D3 = {3} and D is the set of all primes p # 3, so that 03 = 3Z. We
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have respectively [NV](b)* = 1, 35/2, 3%, 33/2) N(x°(b))* = 3%/2, 1, 1, 1, and the
condition v¢(b) | 93 is always satisfied. Since e(p/3) = 2, we have Py(s) = 1,
1/3%/2,1/3%/2 —1/3%, 1 —1/3%. If x = o is the trivial character, we thus have
F(p}, x0,8) = F(s) = [1,45(1 +2/p%) for j > 1, while F(Zk,, xo,s) = 2F(s).
Thus, with the same evident notation as the one used above, the contribution
of the trivial characters is equal to

O 1/2 (1/3%/2,3%/2 3%, 33¢/2)(2,1/3%/2,1/3%/% — 1/3%,1 — 1/3%)
- 33s/2 (1,1,1,3)

1 2 6 2
=—(1+=+= 1+ = .
6( +38+328>||( +ps)

p#3

Do (s)

F(s)

An easy computation shows that the group Gy is trivial for b = pé with 0 <
j <2, but has order 3 for b = p3. Thus, we must simply add the contribution
of the two conjugate nontrivial characters of order 3 of Gpg. By definition, if x
is one of these characters we have

Fpd.x,s)= [ a+2/p*) I =1/

x(p)=1 x(p)#1

The condition x(p) = 1 is easily seen to be equivalent to p = £1 (mod 9), so we
obtain the following proposition:

Proposition 1.8.3. We have

S B IEO) (X5

K/Q pure cubic p#£3

ST 65

p=+£1 (mod 9) pZ+1 (mod 9)

where p Z£ +1 (mod 9) includes p = 3.

Corollary 1.8.4. If, as above, M(Q(+/—3)/Q, X) denotes the number of pure
cubic fields K up to isomorphism with f(K/Q) < X, for all ¢ > 0 we have

M(Q(V=3)/Q,X) = C(Q(V-3)/Q)X (log(X)+D(Q(vV-3)/Q)—1)+0(X*/*) |

where

7 3 2
_ - 1— = -
R0 = 511 ( 2t p3>
= 0.066907733301378371291841632984295637501344 . . .
16 log(p)
D(Q(V=3)/Q) =2y — 5 log(3) +6 Z e —
= 3.45022279783059196279071191967111041826885 . .. ,

where v 1s Euler’s constant and the sum is over all primes including p = 3.
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To check the validity of these constants, we note that for instance for X = 106
we have

M(Q(v=3)/Q, X) = 26289108423790515 , while
C(Q(V=3)/Q)X (log(X) + D(Q(vV=3)/Q) — 1) = 26289108423786084 . ..

As already mentioned, the error is of the order of O(X'/%) (in this precise case
0.4431X1/%), much smaller than O(X?/3%¢) proved above.

1.8.3 Case (5): K, =Q(vD) with D # —3

In case (5), we have Ky = Q(v/D) with D # —3, so L = Q(v/D,/=3). Recall
from the introduction that we denote by F(K3) the set of cubic extensions K/Q
up to isomorphism such that the quadratic subextension of the Galois closure
of K/Q is isomorphic to K. The goal of this subsection is the proof of the
following result.

Proposition 1.8.5. Let D be a fundamental discriminant with D # —3, let
Ky = Q(VD), and let ro(D) = 1 for D < 0 and ro(D) = 0 for D > 0. There
exists a function ¢p(s) holomorphic for Re(s) > 1/2 such that

D S ey NE N | (”2>
o, FEQy — PP e iy, P ’
where
1+2/3% if 31D,
Ls(s) =1 1+2/3° if D=3 (mod 9),

14+2/3°4+6/3*  if D=6 (mod 9).

Proof. If we denote by ¢p(s) the contribution of the nontrivial characters in
Theorem 1.6.1 it is clear that ¢p(s) is a holomorphic function for Re(s) > 1/2,
so it is sufficient to consider the contribution of the trivial characters. We
consider the three cases separately.

(1). Assume first that 31 D.
By Lemma 1.5.5 we have |(U(L)/U(L)*)[T]| = 3"P) where ro(D) = 1if D < 0
and ro(D) = 0 if D > 0, we have [K, : Q] = 2, and since 3 is unramified in
K5/Q the possible ideals b, are b, = p} for j = 0, 2, or 3, where as usual
p3 = /—3Zr, which is not necessarily a prime ideal since 3 may split in K5/Q,
with corresponding ideals ¢, = Z,, ps, ps. Thus by Lemma 1.5.7 we have with
our usual notation

(1,3%,39)(1,1,3)
(1,1,3%)(1,3,3%) °

(Zo/Z)IT| =

so |(Zy/Z3)[T)| =1, 3, 3. We have [N|(b)* =1, 3%, 3%, and Py(s) =1, —1/3%,
1. By Definition 1.2.9 we have D3 = () and D is the set of all primes p such
that (=22) = 1. Thus t*(b) is always trivial and in particular the condition

té(b) | 03 is always satisfied. If x = xo is the trivial character, we thus have
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F(p}, x0,5) = F(s) = Il—3p/p)=1(1+2/p*). It follows that the contribution of
the trivial characters is equal to

_3n2(P)/2(1,3%,3%)(1,-1/3°,1)
- 3% (1,3,3)

() I (143)
= 1+ - 1+~ ),
6 328 H ps

(=2)=1
proving the formula in the case 31 D.
(2). Assume now that D = 3 (mod 9).

Once again by Lemma 1.5.5 we have |(U(L)/U(L)*)[T]| = 372(P). On the other
hand, 3 is ramified in K>/Q, so denote by p3 the prime ideal of Ky above 3
(so that psZy = +/—3Zr). The possible ideals b are b = p} with 0 < j < 3
(including j = 1), with corresponding ideals ¢ = Zg,, ps, p3, ps. Thus by
Lemma 1.5.7 we have with our usual notation

(1,1,3%39(1,1,1,3)
(1,1,3,32)(1,1,3,32) °

Do (s)

F(s)

(Zv/Z)IT]| =

s0|(Zy/Z3)[T]| =1, 1, 1, 3. We have [N])(b)* =1, 3°/2,3%, 33/2 and Py(s) = 1,
1/3%/2,1/3%/2 —1/3%, 1 — 1/3°. By Definition 1.2.9, since 3 is inert in K} =
Q(v/—D/3) (because —D/3 =2 (mod 3)), we have D3 = () (so that 03 = Zg,),
and D is the set of all primes p such that (%) = 1. We have t¢(b) = p3, Zx,,
Z,, Lk, respectively, so the condition t¢(b) | 93 implies that b = Zg, must be
excluded from the sum. Since F(p3, xo0,5) = F(s) = [[(_3p /=1 (1 +2/p%), it
follows that the contribution of the trivial characters is equal to

3 /2 (1,392,303 (0,132,132 < 13,1~ 1/3°)
‘1)0(5) - 33s/2 (1717173)

3r2(D) 2 2
() I 0)
(32)=

proving the formula of the proposition in the case D =3 (mod 9).

(3). Assume finally that D =6 (mod 9) with D # —3.
This case is very similar to the preceding one. The initial computations are the
same, but now 3 is split in K}, so D3 = {3}, hence 93 = 3Z;. We have the
same values of b and t°(b), but since 93 = 3Z;, the condition t°(b) | 93 is always
satisfied, even for b = Zg,. Thus for 1 < j < 3 we have as above F(p}, xo,s) =
F(s) = [_3p/py=1(1 +2/p*), while for j = 0 we have F(Zx,, xo,s) = 2F(s).
It follows that the contribution of the trivial characters is equal to

_ 3D/2 (1/8°/2, 85/, 8%, 83/%) (2, 1/8°/2,1/3°/2 — 1/3°,1 = 1/3°) .

F(s)

S -

O(S) 33s/2 (17171’3) ( )

3r2(D) 2 6 2

= 14 2 4 — 14+ =

o (rgras) I ()
(=32) =
P

giving the third formula of the proposition. O
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Corollary 1.8.6. Set D' = —3D if 3¢ D and D' = —D/3 if 3 | D, and
denote as usual by xp/ the character (Q/) Then if D # —3 is a fundamental
discriminant, for all € > 0 we have

M(Q(VD)/Q, X) = C(Q(VD)/Q)X + O(X*/**¢)  with
O(Q(\/ﬁ)/(@) . 3T2(D)£3L(XD', 1) H (1 _ 1) H (1 . 2 )
B 2 p+1 plp+1)/) "’

p|D’

where
11/9  if3¢D,
l3=145/3 if D=3 (mod 9),
7/5 if D=6 (mod 9).

Note that L(xp, 1) is given by Dirichlet’s class number formula, in other words
with standard notation, L(xp:,1) = 27h(D’)/(w(D")\/|D']) if D’ < 0 and
L(xpr,1) = 2h(D")R(D')/v/D’ if D’ > 0.

The formula in the above Corollary allows to compute the constant C' using
the the folklore method explained in detail in [15, §10.3.6].

1.8.4 Comparison with the Results of [14]

The results of this paper are the cubic analogue of the corresponding results for
quartic extensions studied in [14]. It is interesting to note that the final formula
(essentially Corollary 1.8.6 above) is extremely similar to that obtained in [14].

Proposition 1.8.7. Keep the notation of Corollary 1.8.6, and denote by ap/(p)
the number of copies of Qp, occurring in K5 ® Q, (ap/(p) = 0 or 2 according
to whether the number of prime ideals p; above p in K} equals 1 or 2). For
D # —3 we have

M(Q(VD)/Q,X) = ((W)/@)X+0(X2/3+6) with
ap’ ].
C(Q(D)/Q) = 3&Hﬂn>II( o )(1p),

where
11 if 3%y = p?
(D) =315 if 3Ty, =1
21 if 3Ly = pips -
Proof. By Proposition 1.8.5 we can write
3T2(D) ap’
p(s) = on(s) + o Lals) T (14 “242)

p#3 b’

so that

Dp(s gr2(D) an 1



where ¥p(s) = ¢p(s)/((1 —1/3°)¢(s)). When s tends to 1, ¥p(s) tends to
0, the left-hand side tends to a limit, and it is easy to see that the right-
hand side tends to a semi-convergent Euler product. Thus, if we set P(D’) =

[1,43((1 +ap/(p)/p)(1 — 1/p)), we have

1 / C3(D/) /
= W[B(DP(D ) = WP(D )

C(Q(VD/Q)) = Ress—1 p(s)

where c3(D’) is given in the proposition, since the different cases for L3(1)
correspond to the different splittings of 3 in K5/Q. O

For comparison, we recall the results of [14]. We let & be a cubic number
field, and set g(k) = 3 if k is cyclic, g(k) = 1 otherwise. We let F(k) be the
set of isomorphism classes of quartic number fields K whose cubic resolvent
is isomorphic to k. If K € F(k) then its discriminant d(K) is of the form
d(K) = d(k)f? for some integer f, which by abuse of language we call the
conductor of K and denote by f(K/Q). As in our case, we let

M(k/Q,X) = {K € F(k), f(K/Q)<X}|.
The main result of [14] is then as follows:

Theorem 1.8.8. Denote by ai(p) the number of copies of Q, in kRQ, (ar(p) =
0, 1 or 3 according to whether the number of prime ideals p; above p in k equals
1,2 or 3). We have

M(k/Q,X) = C(k/Q)X + O(XY2F2)  with
1 ca(k) ax(p) 1
Ck/Q = g(k) 24+m2(k) pl;lz (1 A ) (1 - ) ’

p

where

11 if 22, = p

14 if2Z), = p3

15 if 2Zy = p1p2

16 if 2Zy = p3po and vo(d(k)) =3
18 if 27y = p3po and vo(d(k)) = 2
23 if 27y = p1p2bs

The similarities are striking.

Cg(k}) =

1.8.5 An Exact Result when D <0 and 31 h(D)

It is interesting to note that when D < 0 and 3 { h(D), one can prove that
nontrivial characters do not occur in the above formulas, so that ¢p(s) = 0,
thus giving exact formulas for the Dirichlet series. This is based on the following
proposition.

Proposition 1.8.9. Assume that Ko = Q(v/D) with D < 0, D # —3, and
31 h(D) = |Cl(Kz)|. Then for any ideal b € B occurring in the sum of Theorem
1.6.1, the group Gy = (Cly(L)/Cly(L)*)[T) is trivial.
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Proof. An important theorem of Scholz ([47]) says that if D < 0 is a negative
fundamental discriminant different from —3 we have

0 < vk (CUQ(VD))) — rks(CHQ(V=3D))) <1
and that tk3(C1(Q(v/D))) = 1k3(Cl(Q(v/—3D))) if and only if ¢ is not 3-

primary, in other words if and only if € is not a cube modulo 3v/—3Zr,, where
L = Q(v/D,+/=3), and where ¢ is a fundamental unit of Q(v/—3D). Since in
our case we assume that rks(C1(Q(v/D))) = 0, it follows that we also have
k3 (C1(Q(v/=3D))) = 0 and that ¢ is not a cube modulo 3v/—3Z.

We now consider the exact sequence of F3[T]-modules already used above in
the computation of f,,(b):

Zy

Cly(L) Cl(L)
7

Tl L iy

L — So(L)[T] — S3(L)[T] [T — 1] —1.

By Hasse’s formula giving the class number of biquadratic number fields ([36]),
we have |CI(L)| = 277|CI(K>)||CI(K})| with j = 0 or 1, so in particular by
Scholz’s theorem we deduce that 31 |CI(L)|. We thus have the exact sequence

1 — Se(L)[T] — S3(L)[T) — Z’,}[T} — Gp — 1.
In addition, also since 3 1 |CI(L)|, Ss(L) is an Fz-vector space of dimension
r1(L)+r2(L) = 2, generated by the classes modulo cubes of p and a fundamental
unit € of K} = Q(v/—3D). The action of 7 and 3 is given by 7(p) = p~!,
ma(p) = p, T(e) = e !, m(e) = +e=! (where £ = Nk g(€)), and modulo
cubes the =+ signs disappear. Since T' = {7 + 1,72 + 1}, it follows that S3(L)[T]
is a 1-dimensional F3-vector space generated by the class of ¢.

Since Gy maps surjectively onto Gy for b’ | b, it is sufficient to consider
b = 3v/—3. In that case, we have seen that |(Z,/Z¢)[T]| = 3 in all cases, and
since we have just shown that |S3(L)[T]| = 3, by the above exact sequence it
follows that Gy is trivial if and only if Sp(L)[T] is trivial, hence by definition if
and only if ¢ is not congruent to a cube modulo b, = 3/—3Zy, which is exactly
the second statement of Scholz’s theorem, proving the proposition. O

Remark. The same proof shows the following result for D > 0: if D > 0 and
31 h(D"), where as usual D' = —=3D if 34 D and D' = —=D/3 if 3| D, then G
is canonically isomorphic to (Zy/Z3)[T], hence has order 1 unless b = 3v/—3 or
31D and b = 3Zy, in which case it has order 3.

Corollary 1.8.10. Under the same assumptions, we have

1 1 1 2
Y a0 I (+5)

KeF(K2) —=3D\_
( P )7
where
1+42/3% if 31D,
Li(s)=41+2/3% if D=3 (mod 9),

1+2/3°46/3% if D=6 (mod 9).
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Proof. Clear from the proposition. O

Examples.

1 1 1 2 2
> s_+<1+s> 11 (”s)’
KeF(Q(v=T)) JE/Q) 22 ¥ (%):1 P
1 1 1 2 2
> S:—+<1+ S) 11 <1+S>7
KeF(Q(v=2)) JE/Q 22 ¥ (%):1 P
1 1 1 2 2
> L) T (12
KeF(Q(v=8)) JE/Q 202 ; (%):1 b

> mr =3t
K/Q® 22
keria=m { E/Q

1.9 Special Cases: k Imaginary Quadratic

1.9.1 Case (1): £k =Q(v/—3), Cyclic Cubic Extensions

Here k = Ky = L = Q(v/=3). By Lemma 1.5.5 we have |(U(L)/U(L)*)[T]| = 3,
[k : Q] = 2, and if p3 = \/—3Z, is the unique ideal above 3, the possible ideals
b, are pj for j =0, 1, 2 and 3, with corresponding ideals ¢, equal to Zg, ps, p3
and ps. Thus, |c./b.| =1, 1, 3, 9, so by Lemma 1.5.7 we have |(Z,/Z¢)[T]| = 1,
1, 3, 9. Since e(p3/3) = 2, v¢(b) is equal to p3, Zy, Z; and Zi, and we have
respectively [N](b)* = 1, 3%, 325, 335 N(x°(b))® = 3%, 1, 1, 1, and Py(s) = 1,
1/3%,1/3° —1/3%%, 1 — 1/3%. By Definition 1.2.9 we have D3 = {p3}, and D is
the set of all primes p of k, p { 3Zy. 4

If x = xo is the trivial character, we thus have F(p},x0,5) = F(s) =
[Tz, (1 + 2/ Mp)®) for j > 1, while F(Zk,, xo0,s) = 2F(s). Thus the con-
tribution of the trivial character is equal to

_3/2(1,3°,3%,3%)(2,1/3%,1/3° = 1/3%,1 — 1/3%)

Dy(s) = F
o(s) = 35, 31, L10(1,1,3,9) (=)
1 2 6 18 2
— (1= 42 1+
o (1wt am) (0 )
p13Z
1 < 2 6 18 2\? 2
=z 1+zs+3s+48> II <1+s> II <1+23>’
6 3 3 3 ez p ez D
p=1 (mod 3) p=2 (mod 3)

An easy computation shows that the group Gy is trivial for b = p% with 0 <
j < 2, but has order 3 for b = p3, Thus, we must simply add the contribution
of the two conjugate nontrivial characters of order 3 of Gpg. By definition, if y
is one of these characters we have

Fpdx.s)= [ a+z/Mp) I a-1/Mp)),

p=z3 (mod p3) pZa3 (mod p3)
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but the condition p = z® (mod p3) is equivalent to p = +1 (mod 9) for p € Q
below p. So we obtain

Fdoxs) = J[ a+2p II a+2™ I -1
p=1 (mod 9) p=—1 (mod 9) p=4,7 (mod 9)
H (1 - 1/p28) ’

p=2,5 (mod 9)

Proposition 1.9.1. We have

5 o 1+1<1+ +18)H<1+ 2 )
NSK/EYs — 9 '@ s Np)s
K/k cyclic cubic ( (K/k 2 6 3 p13 N(p)
(1) (REYSLI | R
p=1 (mod 9) p=—1 (mod 9)

II a-p)?* I «a-1p™.

p=4,7 (mod 9) p=2,5 (mod 9)

(
Corollary 1.9.2. If, as above, M(k/k,X) denotes the number of cyclic cubic
fields K up to isomorphism with N(f(K/k)) < X, for all ¢ > 0 we have

M(k/k,X) = C(k/k)X(log(X) + D(k/k) — 1) + O(X**¢) ,

where

c@i/i) =5 IT (1= o + gy ) (Resecn 6u(6)?

pCk
= 0.051904999544559289144500298804817252 . . .

log(p
D(Q(v—3)/Q) = 2y — log(3) + 12 ; o erm(p) 5
p
= 1.447607037536093537714535880874836066 . . . ,

1
where r3(p) is the class modulo 3 of p, i.e. 1 or2, v = limg_,q (Resiisgk(s) - 1)

and the sum is over all primes including p = 3.

1.9.2 Case (3): k=Q(v/-3), [Ky: k] =2

Here k = Q(v=3), K» = L = Q(+/=3,vD). By Lemma 1.5.5 we have
[(UWL)/UWL))[T]| = 3, [k : Q] = 2, let p3 = /—3Z;, be the unique ideal
above 3, which is ramified, and B3 an ideal of L above p3. Then ps can be
inert or decomposed in L/k. The possible ideals b, are (p3Zr)? for j =0, 1, 2
and 3, with corresponding ideals ¢, equal to Zr, p3Zr, psZy, and p3Zy. Thus,
le./b.| =1, 1, 3% 3% and |c, N k/b, N k| =1, 1, 3, 3% so by Lemma 1.5.7 we
have |(Zy/Z3)[T]] = 1, 1, 3, 9. Since e(p3/3) = 2, t°(b) is equal to Ps, Zy,, Zy,
and Zp, and we have respectively [N](b)* = 1, 3%, 325, 335 Mx¢(b))® = 3°, 1,
1, 1, and Py(s) =1, 1/3%,1/3° —1/3%%, 1 — 1/3°. But B3 | 03 if and only if p3
is decomposed in L/k
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So if ps is decomposed in L/k we obtain that the contribution of the trivial
character is

3 (1,3°,325,3%9)(2,1/3%,1/3° — 1/3%5,1 — 1/3%)

P = r
0(8) 9.33s (38,1,1,1)(1717379) (S)
1 2 6 18 2
- (1 FEriaEv U N )
6 < + 328 + 333 + 348) peH’D ( + N(]J)s>

while if p3 is inert in L/k we obtain

3 (3%,3%°,339)(1/3°,1/3° — 1/3%5,1 — 1/3%)

Pols) = 55 (1,1,1)(1,3,9) e
1 2 6 2
- 6(”32”333),23 <1+N(p)s) :

Proposition 1.9.3. Let k = Q(v/—3), let D be a fundamental discriminant
with D # —3, let Ky = L = Q(v/=3,VD). There exists a function ¢p(s)
holomorphic for Re(s) > 1/2 such that

1 1 2
> sz~ oo+ T (14 555)

KeF(K») pE€D3
where
D
1+42/3% 4+6/3% +18/3%  if 5 )=!
Ls(s) = D
1+2/3% +6/3% if 3 )=t

Corollary 1.9.4. If, as above, M (K3 /k, X) denotes the number of cyclic cubic
fields K up to isomorphism with N(f(K/k)) < X, for all € > 0 we have

M(Ky/k,X) = C(Ky/k)X + O(X*)  with

1 1 2
C(Kz/k):%mn <1N(p)+1> H <1/\/'(]J)(J\/'(p)—&-1)) ’

p|D peD

where
5/18  if
l3 =
13/54 if

w| D w|T

1.9.3 Case (4): k Imaginary Quadratic

As additional examples, we now assume that k is an imaginary quadratic field
of discriminant D < 0, and we will in addition assume that 3 is inert in k, in
other words that (£) = —1. It is of course not difficult to treat the other cases.
Note that this assumption implies that p ¢ k. In these examples, we will only
compute C(Kz/k).
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Once again we have 3Zj, = p2 with p3 = v/—3Zp, and the only possible ideals
b are p} with 0 < j < 3. With standard notation we have Ress—1 (x(s) =

2h(D)/ (w(D)/ID)), 50
B 72h(D)? 3 2
U6e/) = oy e 1L (1 e * ) (50 S0 82440

pCk

where S; is the contribution of b = p%. We have Sg = 2/3, S1 =1, Sy =
9(1/3—1/9) = 2, S3 = 27(1 — 1/9)/9 = 8/3, 50 So + S1 + Sz + S5 = 19/3, s0
we obtain

_ 1972h(D)?
/M) = Ta5tuD) 2p0] L

(1~ ¥ * )

)

)
_197%(D)? 3,2
"~ 198(w(D)/2)2|D| g (1 p? * p3>
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Chapter 2

An algorithm to compute
relative cubic fields

2.1 General case

2.1.1 Introduction

Let L/K be an extension of number fields. We define Fg ,,(X) to be the set of
isomorphism classes of extensions L/K such that

[L:K]=n, and Ng,d(L/K) <X,

where 9(L/K) is the relative discriminant ideal of the extension L/K.

Our objective is to generalize Belabas’s [2] algorithm for listing all represen-
tatives of Fi ,(X). In particular we consider the case when K is an imaginary
quadratic number field and n = 3, and we will solve it completely when K has
class number 1.

Theorem 2.1.1. Let K be an imaginary quadratic number field with class
number hx = 1. There exists an algorithm which lists all cubic extensions
in Fr3(X) in time O.(X1¢), for all € > 0.

[27, Theorem 1.1] tells us that the number of such classes is of the order of
X. So

Corollary 2.1.2. The algorithm runs in time almost linear in the size of the
output.

We made an implementation in PARI/GP for the case K = Q(¢) which can
be easily adapted for any imaginary quadratic number field with class number
1.

2.1.2 Taniguchi’s theorem

To generalize Belabas’s algorithm we need a theorem by Taniguchi [50], adapting
Davenport-Heilbronn [26] theory to cubic algebras.

Definition 2.1.3. Let O be a Dedekind domain, and K be its quotient field.
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o Let C(O) be the set of “cubic algebras” that is, isomorphisms classes of
O-algebras that are projective of rank 3 as O-modules.

e For every fractional ideal a of O we define
C(0,a) = {R € C(0) | St(R) =a},

where St(R) € Cl(O) is the Steinitz class of R, thus R will be of the form
w10 B w0 @ wsa, for appropriate wy,ws,ws € Frac(R) := R®p K. Let

further
-1
G_{<::f el )‘ aameOX},

Vo={F = (a,b,c,d) |a€a,bc O,ccat dca?}.

o If F €V, its discriminant disc(F) = b*c? —27a?d? + 18abed — dac® — 4b3d
2

belongs to a™=.
o We consider elements of V, as binary cubic forms so (a,b,c,d) = ax® +
ba2y + cxy® + dy® and we define the action of G4 on V, by

M - F = (det M) ™' F(ax + vy, Bz + 8y),
where M = (: g)eGa.

Theorem 2.1.4 (Taniguchi). There exists a canonical bijection between C(O, a)
and V4 /G4 such that the following diagram is commutative:

Va/Ga — C(O,a)

diSCJ, lb ,
a=2/(0*)? _xa { integral ideals of O}

where 0 is the relative discriminant ideal map.

Remark. Note that 0 is well-defined since an O-algebras isomorphism preserves
the discriminant.
See Appendix A for a proof of this result.

Remark. In particular, when O is the maximal order of a number field K
with class number hx = 1, then Taniguchi’s bijection simplifies to a bijection
between binary cubic forms with coefficients in @ modulo GL3(O) and cubic
O-algebras.

To enumerate relative cubic extensions L/K, we shall select only the cubic
O-algebras R which are both integral domains (so that their ring of fractions
is a field), and maximal orders : those maximal algebras are exactly the classes
of the Op. R is a domain if and only if F' is irreducible. Maximality is a local
property, therefore we need to test p-maximality at all prime ideals p C Ok such
that p? | 9(R) and this can done with a generalization of Dedekind’s criterion :
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Proposition 2.1.5 (relative Dedekind’s criterion). [12, Theorem 2.4.8] Let
L/K be an extension of number fields, L = K(0), 0 an algebraic integer with
minimal polynomial T'(x) € Ok[x]. Let p be a prime ideal of Ok, let B be a

uniformizer of p~', i. e. B € p~1\ Ok. Let T(x) = [lici<k Ti(x)ei be the
factorization of T(z) € (Ok /p)[z], with T;(x) monic belonging to Ok |x]. Let
g@)= [ Ti(@). h@)= ] T,
1<i<k 1<i<k

then g(x)h(z) — T(x) € plz]. Let f(z) = B(g(x)h(x) — T(z)) € Oklz]. Then

(
O = Okl0] is p-mazimal if and only if ged(f,g,h) =1 in (O /p)[x].

2.1.3 Reduction of binary cubic forms

Let K be an imaginary quadratic field. Let O be its ring of integers.
We want a reduction theory for binary cubic forms of (Sym3 0?)*, i.e.

F(z,y) = az® + bxy + cxy® + dy®, a,b,c,d€ O
modulo the action of SLy(O), given by:
A B
M -F =F(Az+ By,Cx + Dy), for each M = c D € SLy(0).

Remark. This is not, in general, the reduction asked by Taniguchi’s Theorem,
but we will see later, that it is sufficient for the case hx = 1.

The covariant Hp

Definition 2.1.6. Let F' be an irreducible binary cubic form (in particular its
first coefficient a # 0). We associate to F' the positive definite binary Hermitian
form
Hp = iz — any[* + t]x — agyl® + 8|2 — azy|?,
where
F(z,1) =a(z — a1)(x — az)(z — a3), and

t7 = |al*|la; — ax|?, i,4,k pairwise distinct.
Lemma 2.1.7. We have
(titats)® = |a|?| disc(F)] (2.1)
Proof. Straightforward from definition 2.1.6 and the definition of discrimi-
nant of a polynomial. O
The following two lemmas also follow from a direct computation:
Lemma 2.1.8. We have
Hp(x,y) = Plo” + Q27 + Qzy + Rly/*,

where
P=t+4+t3+t3eR"
Q= —(a1t? + azt3 + ast3) € C
R= |a1|2t% + \a2|2t§ + |043|2t§ cRT.
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Lemma 2.1.9. Let A = —disc(Hr) = PR —|Q|? and D = disc(F). Then
A = 3|D|. (2.2)

Definition 2.1.10. We define [Hp| to be the matrix :

we(59)

The group GLs(C) acts on the space of binary Hermitian forms over C via:
M- [Hg] = M* x [Hg) x M,
where M* = (M)*.

In particular, if M € GL3(O), then the discriminant of Hp is preserved by this
action.

Proposition 2.1.11. The application which sends F to Hp is covariant, i. e.
Hyp=M-Hrp.

Proof.

Just verify on generators of SLy(C): ( _01 (1) ) and ( (1) ié ), aceC. O

Thanks to this property we can translate our problem of defining a unique
reduced F to the problem of finding a unique reduced covariant Hr plus some
extra conditions as we will see in Section 2.2.3.

Definition 2.1.12. Let F = (a,b,¢,d) € (Sym® O?)* be a binary cubic form
with coefficients in O. We say that F' is reduced if its covariant Hp is reduced.

In the rest of this section we will then define reduction for positive definite
binary hermitian forms, and we will se that this notion is completely explicit in
the case of imaginary quadratic number fields with class number 1.

Hyperbolic 3-space

Let

Hz = {z+tj|ze€C,teR"}
= {h=2z+1tj|he€H, such that the ¥k — component is 0,¢ > 0},

where H is the quaternions ring.
We define the action of SLy(C) on Hs by M - (z + tj) = (¢ +t'j), with

i p*AC + 2AD +zBC + BD
2O+ ZCEtJr zZOD + |D|?
/

" 2C]2+ 20D +2CD + D]’
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A B
C D
notations (and operations), this translates to the neater formula

M - (h) = (Ah+ B)(Ch + D).

where M = ( ) € SLy(C) and p? = |2]? + 2. With the quaternion

Let
% = { positive definite binary quadratic Hermitian forms in C}

P,RER* QeC
Q> — PR <0 :

{PWF+Qchmw+Rw2

and let & = Z /R where RT acts on & by multiplication.
Let, finally, ® : & — Hg defined by:

o((58))--3+% 23)
We have

®(M-H)=M-(®(H)), foreach He &, M € SLy(C).

More precisely, ® induces a bijection d: P Hs, wich commutes with the
action of SLy(C).

So, in particular, there is a bijection between orbits of Hs/SL2(O) and
P /SL2(0). As fundamental domains F for Hz modulo SLy(O) are known, we
can say:

Hp is reduced modulo SLy(0) & ®(Hp) € F.

From [31] we have an explicit description of fundamental domains of H3 modulo
PSL(2,0):

Definition 2.1.13. Let K = Q(v/Dg) with Dk < 0 a squarefree integer and
dg the discriminant of K. We define

1 1
Fow = s+t M0 <R < 30 < I(e) < g s+ 2 1
— ; : 2 42
f@(\/fg) = {Z+tj€H3.Z€F@(\/?3),‘Z| +t 21},
where
V3 V3
Foy=s) = {ZG(C:OSRe(z),3Re(z)§1m(z),1m(z)§3(1Re(z))
1
U{zGC:OSRd@fgfifRd@gIm@)gi?Rd@}
And for D # —3,—1,
Frk = {z+4tj€Bk:z€ Fk},where
- ) ez +d)? + P2 > 1 for all c,d € O
Br = {z+t]€H3. with (c,d) = O ,

m(::{zeaogRq@gLogmmggwumm}
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Lemma 2.1.14. For all number fields K we have
[PGL(2, Ok) : PSL(2, 0 )] = 29052 (0% /(O%)%) = 3,
Proof. The exact sequence
1 — SLy(0) — GL2(0) - 0O* — 1
induced by the determinant, gives rise to the exact sequence
1 — (0% -1d,SLy(0)) — GL2(0) — 0% /(0*)* — 1.

and, since for imaginary quadratic number field K, we have dimp, ((’)IX(/(OIX(V) =
1, we can conclude. O

Remark. So when we consider fundamental domains of Hs modulo GLy(O),
we can take half of the fundamental domains above.

2.1.4 Bounds for the t-component of a reduced point in
Hs

Fundamental domains as given in the previous paragraph, give obvious bounds
for the z-component of (z,t) € Hs.

Now we want to bound the t-component from below.

For that we need the following Proposition ([49],[31]):

Proposition 2.1.15. There is a constant k €]0, 00| only depending on K, such
that for any z € C\ K there are infinitely many A\, u € O with

< v
= lpl

So for “big” |u| we have i < 1 and so lzpe — Al < < 1.

But we know that if 2 +¢j € Fx we have |zu — A|? + ¢%|u|? > 1 and so we
obtain ¢t > tg, for some tx depending only on K.

It remains to treat points z + 15 € Fk, z € K.

Let us define

Sk ={z€ K ||zu+ A >1forall (A p)=0}

and (pu,\) = O

This set of singular points is finite modulo addition of an element of O (see
[49, 31]). The z 4+ tj € Fi for z € Sk are the only points in Fx where there is
no lower bound for t.

Fortunately, if hg = 1, then Sx = 0 : in fact if 2 = % with «, 8 coprime
elements of O we just need to take y = 8 and A\ = « to get |uz — A| = 0 with
(A p)=0.

So when hy =1 we have always ¢ > tx > 0 for some tx depending only on
K.

Proposition 2.1.16. Let K be an imaginary quadratic number field with class
number hy = 1. Then there exists a constant tx, only depending on K, such
that t > tg for every (z,t) € Fk.

So from now on we will restrict to K imaginary quadratic number field with
class number hyg = 1.
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2.2 Computing tx for all K imaginary quadratic
with hg =1

As we saw in section 2.1.4, when hx = 1 it is possible to bound |¢|* > t2..
Let us give explicitly those 2 for all the imaginary quadratic number fields
with class number one.

Theorem 2.2.1. Let K = Q(v/—D), for D € {1,2,3,7,11,19,43,67,163}.
Then the value of t3; is given in the following tables :
(bt [2]3[7 ][]
] 2 \ 1/2 \ 1/4 \ 2/3 \ 3/7 \ 2/11 ‘

(D] 19 ] 43 [ 67 [ 163 |
[ % ] 2/19 [ 2/43 [ 2/67 | 2/163 |

Proof. The first table describes the Euclidean fields. In this case the com-
putation of ¢t is very easy and we sketch it here (but it can also be found in
more detail in [22]).

In fact, we only need to find the intersection of the three unit spheres centered
in 0, 1 and w where

V=D  when — D =23 (mod 4)
w =
V=L when — D =1 (mod 4)

So we find that the intersection point x = z + it has

%-1-(1_7% when — D =1 (mod 4)

{ 1+v=D V{D when — D =2,3 (mod 4)
o
4

and we obtain ¢ from t3 =1 — |z|°.

The second table concerns the non-Euclidean fields. For these we just refer
to [53]. O
2.2.1 Bounds for a reduced binary Hermitian form

Once we know t > tx we can bound P, @ and R:

Lemma 2.2.2. Let (P,Q,R) = P|z|” + Quy + Qzy + R|y|* be a reduced Her-
mitian form in &2, with discriminant A = |Q\2 — PR. We have

p< *t/f (2.4)
1Q* < ek P?, (2.5)

for a constant cx depending only on the number field K, and

PR < (1 + Cf) A (2.6)
tK
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Proof. For (2.4) just recall that t = v/A/P by the definition of ® in (2.3)
and t > tg.

Thanks to the bounds on Re(z) and Im (z) given in the description of the
fundamental domain F (in Definition 2.1.13) we get

e 0 < |Re(Q)] < P/2,0 < Im(—Q) < 1/2, and so |Q|*> < P?/2 when
K =Q(3);

e 0 < Re(—Q) < P/2, —v/3/6P < Im(—Q) < V/3/3P and then |Q[* <
7/12P% when K = Q(v/=3)

e 0<Re(—Q) < P/2,0 < Im(—Q)| < Y%l p and then |Q[? < (%) P2
So in all the cases we have

A
1Q]? < cxP? < CK 13
K

for cx = (%) Finally, we have

- QP =

so we obtain

PR<(1+C§>A
tK

2.2.2 Bounds for reduced binary cubic forms

In this section, we are going to give bounds for the coefficients of reduced binary
cubic forms, which allow us to loop on all reduced binary cubic forms in time
O(X). Let K be an imaginary quadratic fields of class number 1 and O = Ok.

Theorem 2.2.3. Let F' = (a,b,c,d) be an irreducible binary cubic form with
coefficients in O which is reduced modulo SL2(O). Let |disc(F)| < D. Then

3/2
«
|G/| S ( D1/4; |b| S 371/2D1/4
V3

lad| < 332DV |be| < 9(38)%/2D"%;  |ac| < 3yD'/2,

Where « = 1/ty, B = (1 + fTK), v = Lﬁﬁ.
K

Proof. Let H = (P,Q,R) € & be a reduced (positive definite) binary
hermitian form. Then

P<R
| Re(Q)

| < P/2
[Im(Q)| < v/|dk|P/2.
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(remark that reduction conditions may be stricter than these ones, so (P, @, R)

satisfying this bounds is not always a reduced Hermitian form).

results of Lemma 2.2.2 we obtain:

P < aVA and PR < BA.

where oo = 1/tg and = (1 + %) Moreover
K

S~

1
t?la;)* <R, and tjty < §(t§ +13) <

It follows that

2 (P p 1 .
|O[i| < 5 Rt2t72t27 for all 7 € {1,2,3}
1%2%3

From (2.7) and (2.8) we obtain

oV VD

2
14 <
|az| > | |2

So we have »
oyi| < 71/22

lal

where v = 28v27 Xﬁ

b = |a(—ay — s — a3)| < 3y1/2DV4,
In the same way

vD
|C| = ‘a| ‘041042 +ajaz + Oé2043‘ < 3’YW
S0
lac| < 3yVD

We can also bound |a|. In fact, using the AGM inequality we have

3(a?D)Y3 =322V <2 4+ 12 +2 = P.

We know that P < v/3av/D and t3t3t3 = |a|>D so we obtain

la| < (0‘ i pi/a
— ﬁ .

Now we need to bound |ad| and |bc|. From (2.13) we obtain

9 3
< —
o’ = 3555

T'hen - 5 A3
) P°R J6]
2p3 < 32
la|“R> < $p = 3D =p3°D
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(2.7)

(2.8)

(2.10)

(2.11)

(2.12)

(2.13)



Moreover,

d 2
0] = [4] 10D = o PlaaPloa PieiE < R,
SO
2 p3
war) < I < g,
and we conclude
lad| < 33/2|D|'/2. (2.14)

Finally we study |bc:

lbe| < |al? (Z |Oéz'> > laiay]

i#]
so we have a sum of 9 terms of the form |a|?a;a ;o with 4,7, k not all equal.
Thanks to the formula

o83 (1] + 15 + 3) < PR (2.15)
we get
PR ‘
|2 < T for every j € {1,2,3}. (2.16)
ivj

Choosing properly the j’s appearing in the formula above, we have, for i, j, k
not all equal
(PR)> _ (PR)®

Jal*feei o *ek[* < W‘M = 5 <D,

which implies

a2 lasllallox| < (36)%/2DY/? (2.17)

So
lbe| < 9(38)*2D'/2. (2.18)
and we can conclude. O

Remark. Reduction modulo SLy(O) is weaker than reduction modulo GL2(O),
in particular the bounds we have found for a, b, ¢, d still hold for forms reduced
modulo GLy(0O).

Corollary 2.2.4. It is possible to list all the binary cubic forms (a,b, ¢, d) mod-
ulo SLo(0), with N'(disc(F)) < X (i.e. X = D?, with the notation of Theorem
2.2.8) in time O(X+¢), for all e > 0.

Proof. The number of quadruples (a,b,c,d) satisfying all the conditions
given in Theorem 2.2.3 is

e DD S N P DD Dl

la| <D/ |d|<DV/?/|a 0<[b| <D/t [¢|<DV/2 /o]

> > > 1

la|<D/* \|d|<D/2/|a] [c|<D/2/lal
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where the second term corresponds to b = 0. Thus

D D D?

2
a
|a|<<D1/4| | |b\<<\D|1/4 la|<Dt/4
b#0

For simplicity we will focus on the last sum of this formula, but the first one
can be treated in the same way.

D? 9 D #{a € O: |a|* =n}
Y <D )] :
n=1

la| < D1/4 |a| n

Now, since #{a € O: |a|4 =n}=0(n®) = O(D?), for all € > 0 and Zle Lis
O(log(D)). So we can conclude. O

2.2.3 Automorphisms and morphisms

As we already said, the problem of reducing F' modulo GL3(O) reduces "nearly”
to the problem of reducing Hr modulo GLy(O). We are going to explain the
meaning of this "nearly”.

Proposition 2.2.5. Let F| # F, € (Sym® 0%)*, F, = M - Fy for some M €
GL2(O). Suppose that Hp, and Hp, are both reduced Hermitian forms. Then
only two cases are possible:

(1) Hp, = Hp, = H and M € Aut(H) (i.e. M-H =H);

(2) Hp, # Hp, but they are both on the boundary of the fundamental domain
F and they are in the same orbit modulo GLy(O).

We need to study these two cases to avoid counting more than once the same
orbit of (Sym?® ©2)*.

For the first case, we can list the finitely many automorphisms {M;} of Hp
and choose only one of the M; - F (for example the smallest F' = (a,b,¢,d) in
lexicographical order).

For the second case, we have to do the same thing but with the matrices {N;}
(we will call them ”morphisms”), which send Hp on the boundary to another
point of the boundary.

Finally, we have to put the two conditions together to get only one repre-
sentative for each orbit.

Proposition 2.2.6. Let F' = (a,b,c,d), F reduced modulo GLy(O), N (disc(F)) <
X2, Let H= Hp, and A = PR — |Q[°.

Let M = ( é g > € GL2(O) such that M - Hr = Hp. Then we have the
following bounds on the coefficients of M :
P P P
ap < EE g < op < 2, (2.19)

A VA - A

o1



Proof. Let us write H(x,y) = P|z|?> + QTy + QTy + R|y|?>. We have
PH(z,y) = [P +yQ” + Aly|?, and (2.20)

RH(z,y) = |Ry + Qx|* + Alz|*. (2.21)

Thanks to the formula (2.20) we can give upper bounds for |A|,|B|, and |D|.
Let we write more explicitly the relation M - H = H:

- A B P Q A C
wn = (23)(59)(3 5)
|A]?P + ABQ + ABQ + |B|?’R ACP + BCQ + ADQ + BDR
ACP + ADQ + BCQ + BDR |C]?P+CDQ + CDQ + |D|?R

_ H(A,B) .
- H(C,D)
By imposing this matrix to be equal to M we have
P
AP+ BQP*+AB)=P? = |B|<—,
| Q |B| |B| < A
P
|CP+DQ|*>+ A|D]?=PR = |D>< TR7
_ P
|IBR+ AQ* + A|A? = PR = |A*< TR.

O

The bounds of the previous Proposition are completely explicit when hyx = 1,
since we know tx and cg.

So we can just loop on all A, B,C, D satisfying these bounds, then select
only the matrices with discriminant |AD — BC| = 1. The following algorithm
needs to be run only once for each of our 9 imaginary quadratic fields of class
number 1: it lists the finite set of possibilities for Aut H.

Algorithm 1. Lists all possible automorphism matrices M such that M - Hp =
Hp (same hypothesis as in Proposition 2.2.6).

For each triple (A, B, D) satisfying the given bounds, do the following:

(1) Solve |AD — BC| =1, for C € O: AD — BC belongs to the finite set O*,
and we can solve for C.

(2) Consider the following 4 x 4 matrix, with coefficients in O:

(JAZ-1)  AB AB B2
W AC  (AD-1) BC BD
AC BC  (AD-1)  BD

lelE cD D (ID]2-1)

(3) Compute the rank r of W (over the field K).

(4) If r =1 or r = 4, skip to the following quadruple (A, B,C, D).
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) (M is an automorphism acting on all

wllisy

(5) If r = 0 output M:(éV

FeF)

(6) If r =2 or r = 3 output M = ( é, ZB; ) (M is an automorphism acting

only on a boundary subspace).

Remark. We could also loop only on A, D and replace step (1) by :

(1) Solve |[AD — BC| =1 for B,C € O. This time BC belongs to an explicit
finite set, and we enumerate divisors.

Proposition 2.2.7. Let M = (4 B) belong to Aut Hp, where Hp is the Hes-
stan of some reduced cubic form F. If r is the rank of the matrix W constructed
in the above algorithm, then

e r=20ifand only if B=C =0 and A = D are units. Then M is an
automorphism for all Hermitian quadratic forms in F.

e r =1 is impossible

e r =2 orr =3 then M is an automorphism for some linear subspace of
F, defined by explicit equations in the variables (P, Q,Q, R).

e r =4 is impossible.

Proof. The condition (4 B) € Aut(P|z|* + QTy + QTy + R|y|*) translates
to the linear system WX = 0, with X = (P,Q,Q, R)*.

e If r = 4, the only solution of the system is (0,0, 0,0) but this is not allowed
since P, R > 0.

e Assume that » < 1 : the matrix (4 B) has rank 2 so the two 2 by 2
matrices on the lower-left and upper-right corners of W have rank 2 unless
B = C = 0. In this case W is diagonal

AP -1
AD —1
AD —1
D2~ 1

Since B = C' =0, and AD — BC'is a unit, we must have [A| = [D| = 1,
so this matrix has either rank 2 or 0 (when AD = AD =1).

O

2.3 The algorithm

Algorithm 2. Given a bound X = D?, output the list of reduced binary cubic
forms modulo GL2(0), such that N(disc(F)) < X.

For each quadruple F' = (a,b,c,d) € O* satisfying all the inequalities in Theo-
rem 2.2.3 do the following
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(1) Approximate the complex roots of F, (a1, a9, as3) to a sufficient accuracy.
Then approximate Hr = (P, (), R) the associated Hermitian form.

(2) Check if Hp is reduced (in particular if Hp is “near” to the boundary of
the fundamental domain use Algorithm 3 (see below) to check exactly the
boundary condition). If not skip to the following F'.

(3) Check whether F' is irreducible in K[z, y]. If not skip to the following F.

(4) Apply Dedekind criterion to check whether F' describes a maximal ring. If
not skip to the following F'.

(5) Compute the set of all automorphisms M; of Hr and compute all the images
M; - F. Check if F'is the minimal element (for some order, for instance the
lexicographic one) in this set: if yes, print F.

Remarks.
e For the precision needed in step (1) refer to Appendix C.

e In step (5), we compute a list of automorphs for F' to decide whether F
is the minimal in lexicographic order (in this case F' should be keeped,
otherwise no). Another way to deal with this problem could be “stocking”
all those F' and then checking GL3(O)-equivalence once we have all the
forms with a fixed discriminant D. The problem is that our algorithm,
does not assure that the output forms are ordered by discriminant, so we
could apply this test only at the end, and this would mean a lot more
space used for stocking all the automorphic forms. Moreover, this would
imply a double loop on the list which will make also the complexity grow.
That’s why we preferred to apply immediately automorphism matrices so
that we don’t have to keep anything in memory (recall that we just output
the “good” binary cubic form each time we find one, so we are not even
obliged to keep in memory the list of representatives of cubic extensions).

2.4 The case K = Qi)

When K = Q(4) the fundamental domain for positive definite binary Hermitian
forms is given by

P<R

~P/2 < Re(Q) < P/2

0 <Im(Q) < P/2.

We now specialize Theorem 2.2.3:

Theorem 2.4.1. Let F' be an irreducible binary cubic form with coefficients in
Z[i] which is reduced modulo SLy(Z[i]) and with discriminant D. Then

3/4 1/4
2 27
al< () 1oy s () s
3 2
27 1/2
o <2VD[% o <9-0VGIDI, Jacl <3 () 101
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As explained in Corollary 2.2.4, we can loop on all (a,b, ¢, d) given in Theorem
2.4.1 in time O(X'*¢), for any £ > 0.

Proposition 2.4.2. Let M = (4 B) € GLy(Z[i]), such that
M-H=H,

then
|Al <1,|B| < 1,|D| < 1,|C]* < 2.

Proof. Bounds on |A|,|B| and |D| directly come from Proposition 2.2.6.
The bound on C' then follows from Algorithm 1. O

P Q
(g %)
is not on the boundary of the fundamental domain, then its only automorphisms
are the ones in the following set:

s (5 ) ={(0 07 %) (5 (%)

Proof. This follows from Proposition 2.2.7. O

Proposition 2.4.3. If

2.4.1 Loopson a,b,c,d

When K = Q(i) we have seen that multiplication by ¢ and —i give automor-
phisms on all cubic forms. So, in Algorithm 2, instead of looping over all a € Z[i]
satisfying |a| < @44, where

9 3/4 »
Amax = (3> ‘D‘ / P

we can just restrict to just one quadrant, for example
{a: |a| < @maz, Re(a) > 1,Im(a) > 0,a # 0}

Moreover we noticed that [PGLy(O) : PSLy(O)] = 2, and a representative for
the nontrivial coset is o0 = é (1) . It sends an Hermitian form (P, Q, R) to
(P,iQ,R) = (P,—Im(Q) + iRe(Q), R), so we can restrict to binary Hermitian
forms such that Re(Q) > 0 (with a border condition for Re(Q) = 0). This new
condition translates to a condition on the coefficient ¢ of the binary cubic form

F = (a,b,¢,d). We can for example restrict ¢ to the upper half plane:
{c: || <€ ¢maz, Im(c) > 1if Re(c) < 0,Im(c) > 0 otherwise }.

From now on let us call ¢ the function which takes a cubic form (a, b, ¢, d) to an
equivalent one (a’,b’,¢',d’) in the good quadrants.
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2.5 Implementation problems

2.5.1 Checking rigorously the boundary conditions

As the computation of P,Q, R involves floating point approximations of the

complex roots of a polynomial in Ok [X], it will not give, of course, exact results.

Those floating point computations will in general be sufficient to test whether

the Hermitian form is strictly inside or outside the fundamental domain. But if

it is very near the boundary (or worse on the boundary), this approach fails.
For that we use the following formulas:

b2
P o= (el + faaP + o) (223)
be _ _ —
Q — W —+ S(Ozlagag + ajoas + 041042(13) (224)
2
C
= _||a2 +3(Jar]?|az]? + |1 [Plas]® + |az[?|as|?) (2:25)

Now we consider aj,asg, ag, @1, @z, a3 as algebraic numbers, and we let S be
the set of the six permutations fixing the «;, and acting as S3 on the a;. The
polynomial

gp = [[(X = o(ara1 + 20z + asa3))

oceSs

vanishes at a1 |+ |az|? + |as]?, and its coefficients are symmetric in (g, az, as)
and (a7, @z, a3) independently. They can thus be expressed in terms of (b/a, c/a,d/a)
and (b/a,c/a,d/a). The polynomial fp(X) = gp (% - %) vanishes at P and
belongs to K[X].

In the same way we can compute polynomials in K[X] vanishing at Q,
R, Re(Q) or Im(Q). Such polynomials are easily computed using a computer
algebra system like Maple (and it is sufficient to compute them once for all);
the polynomials gp, gg, gr and so on are given in Appendix D — before the
trivial linear change of variable yielding fp, fg, fr, etc.

We want to verify rigorously boundary conditions, for instance P = R: if fp
and fr have no common factor in K[X], then P # R. But this is not enough:
we also want to check whether P < R or P > R, i.e. if the point we are testing
is “inside” or “outside” the fundamental domain.

The following theorem of Mahler [41] provides the accuracy we need for our
floating point computations:

Theorem 2.5.1 (Mahler). Let f = apz™ + a12™ ' + -+ + a,, = ap(z —
1) (x — auy) be a separable polynomial of degree m > 2, and let

A(f) = | _min fo; —

1<i<j<m
be the minimal distance between two distinct roots of f. Then
A(f) > V3m~ D2 dise(f)[V/2M(f)~ Y,
where disc(f) is the discriminant of f, and M(f) = |ao| [T}, max(1, |op|).

This translates to the following algorithm:
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Algorithm 3 (Checking an algebraic identity). Let a and 8 € R be two al-
gebraic numbers, and let A and B € K[X]\ 0 that vanish at o, and 3 respec-
tively. Assume we can compute floating point approximations & and 3 such that

o — & < g, ’673’ < g, for any fized € > 0.
We want to decide whether o < 3, a > 8 or a = (3.

(1) Let C = AB and f = C/gcd(C,C").
(2) If the degree of f is 1, then answer a = (3.
(3) Compute a good approximation A of
A(f) = V3m~ D dise ()2 M ()Y,
where disc(f) and M (f) are defined in Theorem 2.5.1 such that A < A(f).

(4) Compute o and f3 at precision ¢ = A /4, i.e. @& and § such that
o — & < e, ‘5—/3" <e.

(5) If |& — 3| < 2¢, answer o = £.
(6) If & < (3, answer o < £3.
(7) If &> (3, answer a > f3.

Proof. The polynomial f is non constant and has o and  among its roots.
If its degree is 1, then a = 8. Otherwise, assume first that |&@ — (] < 2¢. Then

o= Bl < la—al+ |- ] +

0773’ < 4e < A(f).

Hence oo = by Mabhler’s theorem in this case, proving (5).
We now assume that |& — 5| > 2¢; since

a—B=a—Pf+(a—a)—(B-P)
and R
(a_d)_(ﬁ_ﬁ) <28a

a—fF and & — ﬁ have the same sign. O

Proposition 2.5.2. The smallest £ that we can obtain in step (4) of the above
algorithm (i.e. the mazimal precision needed) is > X5, for some positive
constant (3.

Remark. That means that for our computation we will need at most Q(log X)
significant digits.

Proof. Our algorithm loops over reduced integral cubic forms F' = (a, b, ¢, d) €
(Ok)* with discriminant disc(F) satisfying |disc(F)|> < X. In particular, The-
orem 2.2.3 implies that |a| < X1/8.
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For each such form, we may compute various separable polynomials f with
coefficients in a=*Ok, for some bounded integer u. Then disc(f) is non zero,
in a=*Ok. Tts norm is a non-zero rational integer divided by |a|78“, hence
> X% Thus disc(f) > X~%/2,

Landau’s theorem (see [4, Proof of Theorem 13.1] for example) tells us that

M(f) < |1 fl2

and the coefficients of f are monomials in ey, es, e3, f1, f2, f3 (see Appendix D).
Each one of these is bounded by ¢ - X%, for an appropriate constant ¢ and
exponent «.
We have
A(f) > M(f)~ Y.

So we obtain
£l < X7,

but then we can conclude that A(f) > X 9. O

2.5.2 An idea to count only half of the extensions

It is easy to remark that if H = (P, @, R) is in the fundamental domain, then
also H = (P,—Q, R) is. And, in general,these two Hermitian forms are not
equivalent modulo GL3(O).

In particular, if ' = (a,b,c,d) has Hr = H, then F' = (a,—b,¢, —d) gives
Hp = H'.

This allow us to loop only on half of the ¢ satisfying the given bounds.

Then construct both the forms F = (a, b, c,d) and F’ = (@, —b, ¢, —d) and we
check if they are equivalent (comparing F’ with the list of automorphic functions
to F). If not we verify also the list of automorphic functions to F’ to see if one
of them will be found in our loops, and if both the answers are no, we add this
second form F” to our output list.

2.5.3 Loop ond

Once we have fixed (a, b, ¢), we could loop on |d| < dyq. but this will be very
slow.
The idea is to consider the formula of the discriminant of the cubic form F' :

D = Ad? + Bd + C,

with A = —27a%, B = 18abc — 4b® and C' = bc? — 4ac®. Next we can find the
solutions x1, z2 of the polynomial Az?+ Bz + C so that D = A(d —z1)(d — z2).
As we know that |D| < X, then we get |[d — x1||d — z2] < X/|A|. Now let us
suppose that |d — 21| and |d — x2| are > 1/2. Then we obtain

ld— 1] < 2X/|A
|d— 25| < 2X/|A]

and the set of the solutions d is given by the intersection of the two circles of
centre x1 and x5 and ray 2X/|A|.

On the other case, if |d — z;] < 1/2 for i = 1 or 2, then we just need to
consider as possible d the two points [z1] and [z2].
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Now let us consider
VIA]

Al
where A = B2 — 4AC. If |x; — x| > 4X/|A|, then the two circles described
above have no intersection, so the only possible d are [z1] and [x2]. In the
other case, if the two circles have intersection, we have to consider both their
intersection and [x;] and [z2].

This method allows us to make a much smaller loop on d.

|21 — 22| =

2.5.4 Another kind of reduction

After personal conversation with J. Cremona, I tried to apply a different kind
of reduction, which can be found in [23, 54, 24].
Let us consider the subgroup S of GL2(O) of unimodular substitutions of

the kind
{ T —x+k
Tk - )
y—y

. . 1
that is the set matrices of the form 7, = ( K

0 1),W1thk:€(9.

This transformations send
(a,b,c,d) — (a,b+ 3ak,3ak* + 2bk + ¢, ak® + bk* + ck + d).

So it is always possible to replace a cubic form Fy = (ag, bo, co, dp) by an equiv-
alent one, F' = (a,b,c,d) obtained by applying an element of S and such that
b is reduced modulo 3a (after we have chosen a fundamental parallelotope for
the lattice generated by 3a and 3aw, where (1,w) is a fixed basis for O).

Definition 2.5.3. Let Fy = (ag,bo,co,do) € (Sym3 O?)* be a binary cubic
form. And let us fix once and for all a choice of a fundamental parallelotope
Puw for the lattice generated by two elements u,v € Ok. We associate to Fy
the equivalent form F = (a,b,c,d) € (Sym® O?)* such that F = 1x(Fy), for
some k € Ok and that the second component of F, b is in the fundamental
parallelotope Ps, 34, We will call such form F T-reduced.

Remark. This F' is unique if we fix a unique choice for points on the border of

P.

In particular, we can apply this new reduction to Julia-reduced forms. On
the way back, if we have a 7-reduced form F' = (a,b,c,d) which comes from
a Juliarreduced form, then the unimodular transformation 7, which sends it
back to the Julia reduced one is given by k = [Q/P], where (P,Q, R) is the
covariant Hp associated to F'. In fact, unimodular transformations in S leave P
unchanged and send @ — Q — kP, so 71, will send (P, Q, R) to (P, Qo, Ro) such
that | Re(Q)| < P/2 and |Im(Q)| < P/2, and can only increase R, so P < Ry.

Moreover, elements of S leave unchanged Py = b — 3ac (this is the first
coefficient of the Hessian of our cubic form, but it is not true in general that it
is the first coefficient of our covariant Hp!)and Uy = 2b% + 27a?d — 9abc and,
as is shown in Womack’s thesis [54] we have

la| < 3_3/4t1_(3/2D1/4
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and
U| < 33/4]5]—(3/21)3/4

so from the sygyzy
4P* = U? + 27Dd”

we obtain

Py < ey DY2, (2.26)

where ¢y = 3Y/2271/3¢ 1. In particular when K = Q(i), we get cyy = 1,944...
so we get

Proposition 2.5.4. Let F' = (a,b,c,d) be a T-reduced binary cubic form then

bl + cu| D'/

e <
3al

Proof. Immediate from (2.26). O

Remark. This different kind of reduction does not change the complexity of
the algorithm, which is still in O.(X'7¢) but it changes the constant implied in
this complexity. In fact, the algorithm goes more than 6 times faster, wich is
not negligible in practice.

Algorithm 4 (r-reduction). Let K be an imaginary quadratic number field
of class number 1. This algorithm loops over all the binary cubic forms F' =
(a',b',c,d") with N disc(F) < X2, which are T-reduced, and associates the cor-
responding Julia reduced binary cubic form F = (a,b,c,d).

For each a’,b’,c',d’ in O satisfying the following properties:

’ 1 8/2 1/8
.‘a’lgamam:(tl(\/g) X ,

o b belongs to P34’ 307w

, ‘b/‘2+CHX1/4
o ‘C I S 3‘0," )

o N (disc(a’, V', ¢/, d')) < X2. (This last condition bounds d'.)
Do the following:

(1) compute the first two coefficients P’, Q)" of the covariant Hp/ of the cubic
form F' = (a/, b, ¢, d').

(2) Set k the closest point to Q/P in O; select a fixed rounding rule to break
ties (for instance, select the lexically smallest point).

(3) Compute F' = (a,b,c,d) = 7(a’, 0, ', d).

(4) Continue from step (2) of Algorithm 2.
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2.6 Results

We programmed the algorithm for the case K = Q(%) in Pari/GP.

Here are some results we got on an Intel Xeon 5160 dual core, 3.0 GHz.

X is the bound on ?(L/K), N(X) is the number of isomorphism classes of
cubic extensions of Q(i) up to that bound, and ¢ is the running time of the
algorithm. Finally ¢’ is the time needed to do the same computation but using
the version of ray class field algorithm that we describe in Appendix B.1.

[ X [ NX) | t t \
104 276 5s 16s
4.10% 1339 19 s 1mn 18s
9-10% 3305 56 s 3mn 45s

108 42692 24mnls 2h 52mn 9s
4-10° | 181944 2h 49 mn | 34h 24 mn 8s
9-10% [ 421559 | 9h 37 mn > 134 h

105 | 4990974 | 359 h 25 mn > 2720 h

2.6.1 List of cubic extensions of Q(i) up to No(L/Q(i)) <
10*

N(L/Q(0) [ P(X)
169 23+ (14 20) 22 + 26z + i
169 23 4 (2414) 2% + 2ix — 1
353 23 4 (24 20) 2% + 3ix — 1
353 234+ (24 20) 2?4+ iz + i
484 23+ (24 20) 22 + diz + (=1 +19)
529 2B +222+r+1
745 24+ 2% —x —1
745 224222+
772 23+ 2ix? — 2z 4+ (1 — 1)
772 23+ 222 + 22+ (1 —4)
841 2+ (24 20) 22 + (—14+4i)x —i
932 234+ (14 2i) 2% + iz + 1
932 3+ (2+4) 2% +ix —i
953 23+ (242022 + (-1+2i)x —i
953 P+ 242022 +(1+2)z+1
961 22 +222 -1
1025 234+ (24 20) 2 +ix —i
1025 234+ (2+20) 22 +ir + 1
1289 23 4 (24 20) 2 4 26z — i
1289 23 (24 20) 22 + 2iz + 1
1369 23+ (242022 + (=24 3i)z + (-2 —1)
1369 23+ (24 20) 22 + (24 3i) x + (1 + 2i)
1444 23+ (1+i)x®+ (1—14)
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1508
1508
1513
1513
1665
1665
1696
1696
1700
1700
1721
1721
1753
1753
1825
1825
2017
2017
2036
2036
2180
2180
2257
2257
2297
2297
2305
2305
2401
2404
2404
2417
2417
2512
2512
2516
2516
2704
2809
2916
2932
2932
3028
3028
3104
3104
3161
3161
3172
3172

23 4+ 2iz? + (=1 — i)z + (1 +1)
x3+2x2+(1—z)x+( 1—1)
x +(2+22)x + 3ix + (-2 +1)
+ (24 20) 2% + iz + (—1 + 24)
+(1 +22)x +(—2+2))z—1i
+(2+1i) 22 +(2+2i)x+1
+ (2422 + (—2+43i)z — 2
+(24+2) 2%+ (2+3i)x + 20
+ (1 +2z)x +(=2+0)z+(—1—20)
x +(2+) —+Q2+D)r+(2+19)
%+ 2ix? — 2r + 1
23+ 202 4+ 22 — i
2 +iz? + o+ (=1+14)
22+ 2 — x4+ (—141)
2342z + (-1 —i)x +i
2 +222 4+ (1—i)z—1
23+ 202? + (=3 +i)z —i
3 +222+B+i)z+1
23 +ix? + 2ix + (=1 — i)
m3+x2—|—2ix+(1—|—i)
x +( 1—d)z+ (1+14)
(l—z)x+( 1—14)
+(2+2i) 2% + (=14 3i)z + (=2 — 1)
+(2+2i) 2% + (1 + 3i) z + (1 + 24)
+(1 +2z)x — 2z 4 (1 —29)
+(2+0) 2+ 22+ (2 —1)
+(1+20)2% -2 +1
2+i)z?+22—i
222 —x —1
(14 2i) 22 + 3iz + (—1 + 2i)
(2 + i) 22 + iz + (=2 +1)
23 +iz? + (—2+40)x — 2
4+ 2+i)r+2
o3+ 2ix? + (=2 +i)x — 2i
23+ 202 4+ (2+4)x + 2
2%+ 2ix? —x + (=1 — )
22 +222+ o+ (1+14)
o3 + (2 + 2i) 22 + Biz + (-2 + 2i)
3+ (1+i) a2+ 22+ (2+1)
3+ (1+41)
23— x4+ (1+1)
x34—x-+(——1—-0
a; +(1+2i):c +(1—14)
x +(241) 2%+ (1—1)
23 4+ (2 + 26) 22 + iz — 2
gc +(2+22)x + 3iz + 20
+ (1 +2i) 2% — 2z + (-1 — 2i)
(
(
(

x—i—
x° +
3+
x° +

x +(2+14)2? —|—2x—|—(2—|—i)
:c + (24 26) 2% + 2ix + (=1 —9)
23+ (24 26) 2% + 2ix + (1 +14)
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3209
3209
3257
3257
3313
3313
3412
3412
3460
3460
3481
3601
3601
3716
3716
3721
3721
3721
3737
3737
3793
3793
3809
3809
3908
3908
3940
3940
4036
4036
4052
4052
4084
4084
4196
4196
4217
4217
4304
4304
4432
4432
4537
4537
4777
4777
4825
4825
4900
4932

o3+ 2ix? + (=2 — i)z + (2 —9)

23 +22% + (2 — i)z + (1 — 2i)

w34+ (1+i)a? + (=1 =)z + (1 — 20)
P+ 1422+ (1 —i)z+ (2—1)
234+ (24202 + (—1+ 2z + (—1 — 24)
3+ (24222 + (14 2i)x + (2 +1)
23+ 222 + (=1 + 2z + (-1 —1)

23+ 222 + (1+20) 2z + (1 +14)

23 + 2ix? — 2ix + (1 +14)

23 + 222 — 2ix + (=1 — 1)

B 4a? -z -2

3+ (1 +1i) 2% — iz + (1 — 20)

23+ (1+1i) 2% — iz + (2 — 1)

(1+1i)2® +4iz® + (-3 +3i)z+ (-2 — i)
(144) 23 + diz? + (=3 + 3i) z + (=2 + 1)
23 +ix? 4+ (-2 4 2i) x4+ (=1 — 24)
x3+z2+(—1+2i)x+(—1+z‘)
3+t + (24 20z + (2+14)

B+ (242022 +(-1+3i)z—3

234+ (24 20) 2% + (14 3i) x + 3i

234+ (24 2i) 2% + (=2 + 2i) z + (=1 — 2i)
z +(2+21)x2+(2+21)x+(2+z)

23 + 2ix? + (=3 —i)x — 3i

w3 +222 4+ (3 —i)r+3

34+ (=1 —i)z+ (—1+1)

3+ (1—d)x+ (=1+1)

3 — 2z + (1 +1)

x3+2x+(—1—z’)

x? +(1+i)x2+2ix+( 1—1)

+ (1 414) 2% + 2ix + (1 +1)
+(-1—=2i)z+ (—-1+7)

(1—21):1:—!—( 1414)

+(+i)2? -z —2i

+(Q+i)z?+z+2

+(1+2)2*+ (—2+3i)z -3

+2+i) 22+ (2+3i)z+3i

(1—|—z)a: + (1 +4i)a? + (=1 +4i)z+ (=2 +1)
1+i)z®+2+i)a?+z—1

23+ 2ix? + (-2 — i)z +2
m3+2m2+(2—i)x—2i

23+ (14 2i) 2 + (=3 + i)z + (1 —14)

x —|—(2—|—z)a: +B+d)z+(1—19)

z +2iz? + (=1 +d)z+ (=2 —1)

234+ 222 + (1 +4) o + (1 +2i)
¥+t + (1+i)z+ (—2+1)

w3+ + (—1+1i)x+ (=1 + 20)

23+ (14 20) 2% + (=1 — i)z + (1 — 2i)

P4+ 2+t + (1 —i)z+(2—1)

23+ (2 + 20) 22 + 2z + (1 — i)

23+ 2ix? + (1+i) o+ (—1414)
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4932
5057
5057
5065
5065
5105
5105
5113
5113
5161
5161
5329
5329
5364
5364
5449
5449
5465
5465
5476
5569
5569
5729
5729
5776
5792
5792
5849
5849
5956
5956
5972
5972
6065
6065
6100
6100
6241
6304
6304
6553
6553
6561
6561
6561
6561
6569
6569
6625
6625

23+ 222 + (=1 +i)z+ (—1+14)
2 4 ix? + iz —2

23 4 2% +ix + 2

23 4 2z + (=3 —i)x + (—1 — 20)
23+ 222+ (3—i)x + (2+1)
234+ (1 +26i) 2% — 22 — 3i

2+ 2+1i)2? +2x+3

23+ (1420 2% —x —2i

>+ 2+i) 2+ +2

2%+ 222 + (=3 —2i)x + (2 —1)
3+ 222 4 (3 — 2i) z + (1 — 2i)
o3+ 2ix? + (-4 +i)x — 3i

3 +222+(4+i)x+3

23+ 2% + (=3 — 2i) z + (1 — i)
23+ 222 4+ (3 —2i)x + (1 —4)
34 (1+2)2® + (—2+ 2z + (-2 +1)
x3+(2+i)x2+(2+2i)x+(—1+2i)
23 4 (1 +1i) 2% — 2z + (1 — 2i)
x+(+)x — 2z + (2 —1)

23+ (24 20) 2% + (1 — i)

23 4ix? + (1+ i)z + (=1 + 20)
24+ (=1+i)x+ (—2+1)
23+ (24 2i) 22 + diz + (—3 + 24)
23+ (24 2i) 22 + diz + (=2 + 30)
3+ (24 26) 2% + 3ix + (=2 + 24)
3+ 2ix? + (=4 +i)z + (=2 — 20)
23+ 222 + (4+ i)z + (2 + 2i0)

23 4 2iz? + (=1 = 2i)z + (2 + 1)
234+ 22% + (1 —2i) 2z + (=1 — 2i)
34+ (1+2)2? + (-2 +i)z+1
>+ 2422+ 2+ —i

3 4+ 2z + o+ (=1 +1)

23+ 202 —x + (—1+1)
x3+ix2+x+(—1—i)

23+ 2% —x+ (1+414)

(14+4)a®+ (1 +5i) 2> + (=3 +6i) z + (-2 + 20)
1+ x>+ (2+2) 2%+ (1 +2)z+1
(1+4) 2%+ biz? + (—4 + 5i)z — 2
23+ (24 260) 2% + iz — 20
23+ (24 20) 2% +iz +2

22+ (1+2) 2%+ (=2 +i)x—2
B4+ 2+i) 2+ 2+ +2i
23+ 3ix + (=2 — i)

o3 + 3iz + (1 + 2i)

x3+3x—z

(14 14) 2> + 3iz? + 3ix + 2i

2342z + (-1 —i)x + (2 +1)
23+ 222 + (1 —i)x + (=1 — 2i)
x3+(1+2z):c +(2—1)
23+ (2+14) 2% + (1 — 26)
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6889
6928
6928
7072
7072
7200
7200
7265
7265
7328
7328
7345
7345
7345
7345
7396
7460
7460
7529
7529
7569
7684
7684
7760
7760
7801
7801
7888
7888
7921
7988
7988
8065
8065
8080
8080
8081
8081
8185
8185
8212
8212
8324
8324
8420
8420
8480
8480
8489
8489

x4+ 222 + 22— 1

a3 + 2ix? —ix + 2

23 4+ 222 —ix — 2
(1+1)2® 4+ diz® + (-3 +2i)z — 2
(1+1i) 23 + 4iz? + (=2 + 3i)x — 2
23+ + (1 —i)x+ (=1 —1i)
w3422+ (-1—di)x+ (1 +1)

P+ (142022 + (-2—i)z —2i

B+ 2+ +2—i)z+2

23+ (142 2% + (=3 +3i)z + (=3 — 1)
23+ (2+i) 2%+ (34 3i)z + (1 + 3i)
23+ (1+2) 22+ (=3 +i)z+ (1 — 2i)
P+ 240>+ B+i)z+(2—1)
o3+ (2 4+ 20) 22 + (1 — 24)

23 4 (24 20) 2% + (2 — 1)

23+ 2ix + (1 — i)

23+ 2ix? + (=3 + i)z + (-1 — 3d)
23+ 222+ (3+i)x+ (3414)

23 +ir? + (=1 —2i)z +2

3+ 2?4+ (1—2)x—2i

3+ 222 + 32 +3

23 + 2i2? — da + (1 — 3i)

23+ 222 +4x+ (3 —1)

2+ (1+20) 22+ (=3+i)z+ (-1 — 3i)
P+ 24102+ B+i)z+ (3+1)

o3 +ix? — 22 + (1 — 2i)

23+ 22+ 22+ (2 —1)

23+ (1+20) 22+ (=3+3i)z+ (-1 —1)
P+ 24022+ 3+3i)z+ (1+4)
A+ x3+ 2+i)z> +x+ (1 —1)
(1+i)a®+ (1+5i)z? + (=1 +6i) z + (—2 + 20)
1+i)ad+(2+2i)z2+2—1

¥ +iz? + (—144d) x4+ (-1 — 26)
B+t + (14 + (2+10)

o3+ 2ix® + (=4 +i)x — 2i

234+ 22% + (4+i)z+2

23+ 2ix? + (=4 — i)z + (1 — 26)

w34+ 222 + (4—i)z+ (2—14)

2+ (1+20) 22+ (-2+i)z+ (-2 — 2i)
P+ 2402+ (2+0) x+ (24 20)
(1+i)a®+ (1+5i) 2% + (—2+5i) z + (—2 + 20)
1+ +(2+20) 2?2 +(2+i)w—1i
234+ (1+2) 2?2 + (—2+ 3i)x + (—1 — 24)
P+ 2+i)2*+ (2+3i)z+ (2+1)

o3 +iz? +x + (=1 + 2i)

23+ 2% —x+ (=2 +1)

(144) 23 + (1 + 26) 22 + 2iz + (1 +4)
(144d) x>+ (2+5i) 2® + (=1 + 7i) x + (—1 + 2i)
3 +ix® + (-2 —2i)x+i

422+ (2-2i)z—1

NN SN N S
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8545
8545
8577
8577
8585
8585
8585
8585
8608
8608
8705
8705
8713
8713
8852
8852
8980
8980
9065
9065
9113
9113
9161
9161
9169
9169
9248
9248
9297
9297
9409
9409
9425
9425
9505
9505
9521
9521
9540
9540
9593
9593
9649
9649
9700
9700
9760
9760
9764
9764

:c +(1+2i)x +z+2

x —%(2—% i)x? — 2 —2i

3+ 2% + (=24 2i)x + (=2 +1)

3+ 222 + (2+ 20)z + (-1 + 24)

23 +iz? + (=1 —3i)z + (1 — 2i)

422+ (1 -3z +(2—1)

23+ (1+2i)2? + (=3+i)z+ (—2 — 3i)

3+ 2402+ B+i)z+ (3+26)

3+ 202 + (=24 i)z + (—2 — 2i)

22+ 222+ (24+1i)z + (2 + 26)

2%+ 2ix? + (=4 —i)z + (=1 — 2i)

234222+ (4—i)z + (2+1)

23+ (24 2i)2? + (—145i) x + (—4 +1)

234 (2+20) 2® + (1 + 5i) o + (—1 + 44)

3 +iz? + 2x + (=1 — i)

2+ 2?2 -2+ (1+14)

23+ (14 2i)2? + (=24 4i) x + (=3 + 1)

234+ (2+i) 22+ (2+4i)z + (=1 + 3i)

P+ (142022 +(1+i)z+ (2+1)

4+ 2+ + (-1+i)x+ (-1 —20)

2 4ix? + (=1 +i)z+ (-2 —1)

x'+x +(1+') + (14 24)

x + 2iz? — 3x + (=2 — i)

23 4 222 + 3z + (1 + 2i)

23+ (24 2i) 2% — 2 + (1 — 24)

2+ 2+20) 2+ 4+ (2-1)

o3+ 2ix? + (=24 3i) x + (-2 — 2i)

23+ 227 + (2+ 3i) x4 (2 + 20)

23 4 w2 — 2ix + (2 + 1)

x3+x2—2im+(—1—2i)

v —|—(2+2i)x +(=3+4i)z+ (—6+1)
+(2+20)2?+ (3+4i)z+ (—1+60)
(2+Um+(2+)
+(2+ i)z + (—1+2i)

+ (1 +20x +(—4+i)z+ (—2—20)
+ 24022+ (A +i)z+ (2+ 2i)
+(1 +21)x + (=3+d)z+ (-3 —2i)

@ +(2+ i) 2%+ (3+i)z + (2 + 3i)

23+ 2ix? + (=3 +i)z+ (1 —1i)

3 +222 + (3+i)z+ (1—1)

23+ iz + (=14 3i)x + (=2 —1)

224+ 2? + (14 3i)z + (14 2i)

4+ (1+i)z?+(-2—i)x—3i

B+ (1+i)2*+(2-i)z+3

o3 +ix? 4 ix + (=2 + 1)

23 4+ 2% + iz + (=1 + 2i)

234+ (1 +i) 2% + 3iz + (=1 — 1)

23+ (1414) 2% + iz + (1 + 1)

23 42?2 — 3x + (1 — 26)

3+ 2%+ 3x+ (2 1)
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9972 23+ (1+20) 22 + (-2 + 2z + (-3 — 1)
9972 B+ 2402+ (2+2)z+ (1+30)
10000 23+ (1+i)2? —iz+ (=1 +1)
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Appendix A

A.1 Taniguchi’s theorem
Definition A.1.1. Let O be a Dedekind domain.

o Let C(O) be the set of “cubic algebras” that is, isomorphism classes of
O-algebras that are projective of rank 3 as O-modules.

e For every fractional ideal a of O we define
C(O,a) = {R e C(0) | St(R) =a},

where St(R) € CI(O) is the Steinitz class of R. Let further

_ ae0 peal x
Ga_{<76a 5co )’ ad—pByeO }7

Vo ={F = (a,b,c,d) |acabcO,ccatdca?}

o If F € Vg, its discriminant disc(F) = b*c* — 27a*d? + 18abcd — 4ac® — 4b3d

belongs to a=2.

e We consider elements of V, as binary cubic forms so (a,b,c,d) = ax3 +
bx?y + cxy® + dy® and we define the action of Gq on Vg by

M.F = (det M)~ F(az +y, Bz + by),
where M = ( : ? > € Gq (this twisted action makes the representation
faithful, the usual one has kernel us).

Theorem A.1.2 (Taniguchi). There exists a canonical bijection between C(O, a)
and V, /G4 such that the following diagram is commutative:

Va/Ga — C(O,a)

discl lb
a=2/(0*)? _xat {integral ideals of O}

where 0 s the relative discriminant ideal map.
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Proof. For the sake of completeness, we reprove this theorem in this Ap-
pendix.

We will not strictly follow Taniguchi’s proof, but we will also take some
elements from previous proofs of the result over Z ([28], [34], [5] and [7]).

Let R € C(O,a). Let us choose a representative of an element R € C(O,a)
in the form

R=1r-O+wi-O+wsy-a,

for appropriate wy,ws, w3 € Frac(R) :== R®p K.
Let us write

wiwz = a + Pwi + yws;

since wy(aws) C R, we have a, 3 € a™! and v € aa™! = O.

Hence we can normalize our basis wy, wo by replacing it by w; —~ and ws — 3,
if needed, to obtain awjws € O -1

We know that a cubic ring with a normalized basis is determined up to
isomorphism by the products

w%zg—bwl—i—awg
w3 =1 — dwy + cwy (A1)
wWiw2 =M

By associativity of the product (in particular w; - (w3) = (wjwz) - wa) We obtain

l=-bd
m=—ad , (A.2)
j = —ac

so R is determined up to isomorphism by (a, b, c,d), and since Ow?, a’?w2 C R
we have
ac€a, beO, ccal, dea?

So we define ¢ : C(O,a) — V,, which associates to a representative R € C(O, a)
the element (a,b,c,d) € V, given by the product laws (A.1) and we define
¥ : Vo — C(O, a) which associates to an element (a,b, ¢, d) € Vg, the O-module
O ® O @ a provided by the multiplication law given by (A.1) and (A.2), which
makes it an O-algebra.

Now C(0O, a) is defined modulo isomorphism, so we have to take into account
& D) €M) (K = FriO)),
with discriminant ad — bc € O*. It is easy to prove that the subgroup which
fixes R/O = O @ a by left multiplication is exactly G,.

Moreover, once we apply this basis change, computations will show that the
binary cubic form (a’,b’,¢,d") € Vg corresponding to (w},ws) will be obtained
by the action of M on (a,b,c,d). So we have finished the proof of the bijection.

Let us prove that the diagram is commutative.

Is is sufficient to prove it locally, so we can assume that O is a discrete
valuation ring, so we are in the case of a principal ideal domain. First of all
remark that 0 is well-defined since an O-algebras isomorphism preserves the
discriminant.

basis changes. Let us consider matrices (
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Since (1,wq,wq) is a basis of R we have that the discriminant of the ring is

Tr(l)  Tr(w;) Tr(ws)
DR =D (1,w1,w2> = Tr(wl) ’I‘r(w%) T‘T(W1W2)
Tr(wz) Tr(wiwz) — Tr(wd)
3 —b c
= b v¥®—2ac —3ad
c —3ad ¢ —2bd

= b2 + 18abed — 4ac® — 4b3d — 27a*d?* = disc(a, b, ¢, d).

Finally, since R =1- O @ w; - O @ ws - a and this is a pseudo-basis, then the
formula for the relative discriminant ideal is

o(R) = disc(a, b, c,d) - a2,

and we conclude. O
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Appendix B

B.1 Another algorithm to enumerate cubic ex-
tensions

Another way to list cubic extensions of a given number field K is given by class
field theory.

In fact we know there is a bijection between Abelian extensions L/ K (modulo
isomorphism) and equivalence classes of congruence subgroups (m, An(L/K))
where m is a suitable modulus for the extension L/K and A, denotes the Artin
group associated to the modulus m and the extension L/K [12, Theorem 3.5.1].

B.1.1 Quadratic extensions

Let K be a number field. Since quadratic extensions are all Abelian, we can
just apply the bijection to list all the extensions Ko/K of degree 2.

Algorithm 5 (List of relative quadratic extensions). [12, Algorithm 9.2.4]
Given a number field K and a bound B, this algorithm outputs a list of all rela-
tive extensions Ko/ K of degree 2, modulo isomorphism such that N (0(K,/K)) <
B.

(1) Compute the list Ly of all the ideals mg of norm < B which are conductors
at 2 (i.e. for all p | mg, vy(mg) =1 if p {2, while 2 < vp(m,) < 2e(p/2) +1
if p|2).

(2) Compute the list £ of all moduli of the form m = mgm,,, with my € £ and
My ranges through all the subsets of the real places of K.

(3) Fori=1,...,|L], let m the i-th modulus of the list £. If m is not a conductor
of (m, Py) or hy odd, go to step 3.

(4) Compute the list C of all subgroups C of index 2 of Cly,.

(5) For j =1,...,|C|, let C be the j-th element of C. Check if m is a conductor
of (m,C), otherwise go to step 5.

(6) Compute the defining polynomial of the extension K3/K corresponding to
the equivalence class of (m, ().
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B.1.2 Cubic extensions

The algorithm listing cyclic cubic extensions is analogous to Algorithm 5 and it
is given in [12, Algorithm 9.2.5], so we will omit it here.

So let us consider only the noncyclic case.

Let K be a number field, L/K a noncyclic extension, N the Galois closure
of this extension (so Gal(N/K) is isomorphic to D3) and K> the only quadratic
extension of K contained in N.

Ly

/

L

K

/

K

Theorem 9.2.6 ([12]) give us properties of this kind of extensions (more generally
for dihedral extensions Lo/K with Galois group D,,).

In particular, when n = 3, we know that the conductor of the extension
Ly/Ks is of the form aOgk,, for some ideal a of Ox and that d(L/K) =
?(K3/K)a?,. The following algorithm lists all cubic noncyclic extensions of
K of bounded relative discriminant:

Algorithm 6. [List of relative noncyclic cubic extensions]

Given a number field K, and a bound B, this algorithm outputs a list of all
relative extensions L/ K of degree 3, modulo isomorphism, such that No(L/K) <
B.

(1) Compute the list £y of all the ideals a of K of norm < B'/2 which are
conductors at 3, except that we allow v,(a) =1 for p | 3.

(2) Compute the list Q of quadratic extensions K5/K up to K-isomorphism such
that N (o(K2/K)) < B.

(3) Fori=1,...,|Q| let Ky be the i-th element of Q, let ? = ?(K2/K), and
let 7 be the generator of Gal(K3/K).

(4) Let £, be the sublist of the ideals a of £y such that

v < (i)

and such that if p{3 and p | a then p{9;if p|3 and vy(a) =1, then p | d;
and finally if p | 3, e(p/3) is even and v, (a) = [3e(p/3)/2] + 1, then p 1.
Compute the list Lo of ideals mg of K5 of the form my = aZg,, with a € £;.

(5) For j = 1,...,|L2] let m be the modulus whose finite part mq is the j-th
element of £, and with mo, = 0. Check whether m is the conductor of
(m, Py). If not go to step 5.
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(6)
(7)

(8)
(9)

(10)

Compute the list C of all the congruence subgroups C' of I,(K32) of index 3.

Forc=1,...,|C]| let C be the c¢-th congruence subgroup of C, check if m is
the conductor of (m,C). If not or if 7(C') # C, go to step 7.

Test if 7(I) = 1" in Cln(K3)/C ie. test if N, /xI =1in Cln(K2)/C.

(m,C) is the conductor of a suitable cyclic cubic extension of Kj. Using
Kummer theory, compute a defining polynomial P(X) € K3[X] for the cubic
extension Ly /K5 corresponding to (m, C').

Let P. = P7(X) be the polynomial obtained by applying 7 to all the coef-
ficients of P. Set Q(X) = Ry (P.(Y),P(X —Y)), where Ry denotes the
resultant in the variable Y. Then Q(X) € K[X]. Factor Q(X) in K[X],
output one of the irreducible factors of Q(X) of degree 3 in K[X] (it will
have one) as a defining polynomial for L/ K, and go to step 7.

Remarks. We took the previous algorithms from [12], fixing some small mis-
takes in the algorithm for noncyclic cubic extensions

(1)

(2)
(3)

(4)

In step 4 the conditions on p | a are not clear: [12] says “...and finally if
p | 3 and vy(a) = 3e(p/3)/2 + 1, then p { 9” in fact, the equality implies
that e(p/3) is even, so when it is odd we can just skip the test. Moreover,
when p 1 3, there should be a condition saying that v,(a) = 1, but in fact
this was already tested on step 1.

In step 5 “terminate the algorithm” must be replaced by “go to step 3”

In steps 7— 8. In fact for each C' € C it is not sufficient to test wether m is
the conductor of (m,C), but we need to check also if 7(C) = C'. Thanks to

[12, Theorem 9.2.6]it is sufficient to test the condition 7(I) = I~!, where

Cln(K2)/C = (I).

In the original algorithm in [12], to get the lists £, £y, and so on, you first
construct the list of all ideals up to some bound B and then select the
ones satisfying the given conditions (by factoring them). It is much more
straightforward to construct directly those ideals, and it make a big gain
of time and space in the algorithm. The first thing to remark is that for all
prime ideals p in Zg, apart from the ones above 2 and 3 the only possible
exponent is 1. So we can directly make the list of all these ideals (just
using a loop on prime ideals over Z, factoring them over Zx and making
all the possible products), then we multiply for the allowed powers of po
and ps (which depend on the step of the algorithm we are : quadratic
extensions, cubic extensions,...).

We can also avoid to factor the ideals of Ly to test the condition in step (4)
of Algorithm 6. Indeed, we can define a3 = lem(a, 3%) and ag = a/ag. Then
we just need to test if lem(ag,d) = 1 and if ag = p; then lem(9, p3) # 1.
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Appendix C

C.1 Approximation errors in Algorithm 2

Proposition C.1.1. Let F(x) = ax® + bx? + cx + d be our cubic polynomial.
If we compute its roots oy, as, g with relative precision e, that is

|ai—di| <<€|ai|, (C].)

for i =1,2,3, and we suppose that we are working with exact arithmetic (i.e.
computing operations does not add any error term to our expressions) then we

have 1971
max {|P~ P|,|Q - QI |[R— R|} < ==X -, (C.2)

where ]5, Q and R are the values computed for P,Q, R respectively, using the
approzimations &; instead of the .

Proof. Let us recall that t? = |a|?|a; — oy |?, with {i,j,k} = {1,2,3}.
Now

llaj — ai| — &5 — apl| < laj — & ] + ey — dx| < eay] + [axl)),

SO
Iti — &3] < elal (o] + |axl). (C.3)

Moreover
|7 — &1 < [t + il[ts — &l < (2t + elal(Jag| + |aw])) - elal (Joy] + o)
and t; < |a| (Joyj| + | |) so we get
7 — 7] < elal* 2+ &) (Jay| + low ). (C4)

Now we develop P

PPl < |t — 8]+ |t - 5] + [t — &3]
< elaP2+e) ((loaf + las)? + (loa| + |as])® + (Jaa| + |a2l)?)
< 2-elaP2+e) (lan] + [az| + |as])*.

Now we can bound |ay|
12 X

lovi| <y )
|al
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and in particular when K = Q(¢) we have

] < 1 /27x\ Y4
Q5| S |a| 2 .

Co = 71/2X1/4,

Let us call

(remark that ¢, > 1 for every X > 1) so that

Ca
|ovi| < ol (C.5)
So .
(la| + |ao| + |as])? < Wci.
And finally
5 9
PoPl<2clafze)
0 )
|P—P|<18-c-(2+4¢)-c (C.6)
Let us call
cp=18-¢c-(2+¢) -} (C.7)

for simplicity.
When we look at Q we have

Q — Q| < |ant] — anfl] + |asts — G| + |ast] — asi]]
Now for each triple i, j, k with {i,4,k} = {1, 2,3}, we have

loit? — (o £ cay) 2|

< ot} — o] + leait?|

< laallt? = &) + el (2 + ¢ laf? 2+ &) (o + |ax])?)
So
Q-Q < %me%mme)aw-2<|d1|+|d2|+|d3|>2
< C—a0p+sc—a(1+(2+5)5)~18ci.

lal

Finally for R we have

lal

R — R| < [Ja1 8] — |, 2

+ |25 — |13 | + | s |25 — |as|?E3] -

Now, since |&;|? < |ai]? + 2 - e|ai|® + 2] oy |?,
|lovi 7 — 1683 | o7 = (Jeu* £ (2 € + &%) eu]) £
o *[87 — £ + (2 € + &)’ i

IAN N A
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So

- 2 2
|IR—R| < 7|a(|12 cp+(2-e+ 52)—|a‘|"2 la]* (1 +e(24 €)2(Jou | + |ez| + |az])?
2 5 ct
< W0p+18-(2-5+5)(1+5(2+5))~W.

Putting rougher bounds we get

|P—P| < 37¢% ¢
Q—Q < 55¢ ¢
IR—R| < 73ct.¢,
and we can conclude. O

Corollary C.1.2. Let us suppose K = Q(i), X < 10°, ¢ = 10~%® and that
we are working with exact arithmetic, then the error that appears when we test
border conditions is bounded by ¢ < 2-1073C,

Up to now, we assumed exact arithmetic, and the error comes only from the
«; which are approximate values. In reality, we have also to take into account
the error coming from floating point computations. For all basic operations +,
x, —, /, let us note & ®, ©, @ the corresponding machine operation. For all
*x € {+,—, x, /}, we suppose that

[(a*b) — (a®b)| <elaxbd]

for any a and b in R.
By induction we obtain the following proposition

Proposition C.1.3. Let v = (21,...,71) € C*, and define
Sy =21 ©w2® - Dy,

Po=21®02,® - ® xk.

Then
k E_
I (““) - (”5)—<k—1>) el (©8)
and
k
P — ka < (A 4kt = 1) ||t . (C.9)

Corollary C.1.4.

k 12
Sk — E x| < <2> ezl o (C.10)
i=1

k

Pk—HCEk

i=1

< ke Jlalls, (C.11)
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Proof. Apply Newton formula to (1+¢)* and (1+¢)*~! in (C.8) and (C.9)
respectively. For (C.8) we get

s ()2 0)

It is sufficient to choose ¢ sufficiently small (for example € < ;) to bound the

sum by ¢, so that
k k?
so<((5) +1) el < Selel

for all £ > 2. The proof of (C.11) is similar but easier so it is left to the reader.
O

Proposition C.1.5. If we drop off the hypothesis that we are working with
exact arithmetic and consider also the error givenm by machine operations, we
get

max{|P—P’|,|Q-Q’|,|R-R’|} <179¢% - e (C.12)
Proof. When we look at the operations used to compute P, Q and R, the

most complicated one is R which is computed in 14 simple operations on the
a;, and it involves the product of only 4 of these a;. Using (C.10) and (C.11),

we see that .
IR — R| < (( 125 > n 1) %5 < 106cte
a

So putting together the two kinds of error we get
IR—R|<73-¢%-e4+106¢% e =179 ¢ ¢,
Analogous (smaller) bounds hold for [P — P’| and |Q — Q'|. O

Corollary C.1.6. If we suppose K = Q(i), X < 10° and ¢ = 10~%%, the error
term that we obtain testing the borders is bounded by 10723,

C.1.1 Error when computing k&

Let F' = (ag, bo, co, dp) be a Cremona-reduced binary cubic form, and let Hp =
(P,Q, R) be the associated binary hermitian form. Finally let G = (a,b, c,d)
be the corresponding Julia-reduced binary cubic form. When we compute k& =

k1 +iks = L%-‘ (we round separately imaginary part and real part) we only have

a problem when L%—‘ =k; + %, for i =1 or 2, where we set Q1 = Re(Q), Q2 =
1m(Q).

But to detect it with approximate values we need again to estimate the
possible error 4.
Let us suppose for example
Qi/P=ki+w

where 0 < w < 1, and o
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Proposition C.1.7. Let K = Q(i). The error 6 for k; (with exzact arithmetics)
1s bounded by
6] <103 X3/* . ¢ (C.13)

Proof. We have

(@i — (ki +w) P) = (Qi = (i +w) P)| = oP.

So we obtain R . R
6 <P < Qi — Qi + (ki +w)|P — P|.

(§ince P > 1, and it is sufficient to take the error on P sufficiently small to get
P <1 t00).
Now we need to bound k but since by = 3ak + b, we get

|6 + [bol

k|l <

Now we know that |b] < 3¢, and
|bo| < max {Re(3a), Im(3a)} < [3a| <3 (\%)3/4)(1/4,
with a = 1/t so
ki < [k| < w < o+ (\%)3/4)(1/4.

In particular, when K = Q(¢), with rough approximations we get
ki +w < 4Xx4

then
§<55-c-¢3 +37-e-c2-4x1/4

In particular for K = Q(z)
5 <10%. X3/ ..
O
Corollary C.1.8. If we suppose K = Q(i), X < 10°, ¢ = 107%® and exact

arithmetic we get
§<107%.

Proposition C.1.9. If we suppose machine operations, we have to add to the
previous error §, an error &' < (37 +2¢)(4X Y4 4+ 1), where 7 = 106 - cle.

Proof. Recall that

max{‘f?—f?’

Jo-a

} <106 - cle,
and that we suppose that the error given by a single machine operation is
ProQ;<P/Q;-(1+e).
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Now P'/Q’ < ggi:; < g(l + 37) where 7 = 106 - cte.

So PPoQ < g(1+37)(1+€) < g(1+26+37), if we suppose |7| < 1/3 so

P'od —P/O| < (3r+2) ‘P/Q‘ (C.14)
< (3-106¢ - e +26)(4X % 41) (C.15)
In particular when K = Q(4) we have ¢’ < (4295 -¢- X)(4X /4 +1) O

Corollary C.1.10. If we suppose X < 10°, ¢ = 1073® and machine arithmetic
we get
§<10777.

C.1.2 Error when computing |d — z1||d — x5
Let F = (a,b,c,d). Set A = —27a% B = 18abc — 4b3,C = b*c? — dac®. We
consider the polynomial Az? + Bz + C; A = B2 — 4AC is an exact value, so

VA — VA| < VA

Recall that z; = =ZEYA and gy = =B-YA

Proposition C.1.11. We have that
l|[d — x1||d — 2| — |d — &1||d — || < 4- X -7+ 72,

with 7 = v -eX3/*, and v is constant depending only on the number field K .
In particular yq) < 104

Proof. For i =1 or 2, we have

VA VA

2A 2A

s — d| = < WA -VA| <7,

where 7 = ¢[v/A|. Hence,
ld — x| — |d — &3] < | — @] < 7.
Now

ld = a[|d = 2| = |d = d1[|d — of| < |d = xo|[|d — 21| = |d — &[] + |d = 21 [|d — 22| — |d — &2f|
S |d—$2|7’+ |d—.’13'1|’7'
2X
< — 74 |d— |7
A
4X

< —T—i—TQ,

— 14

since |d — &;| < |d — ;| + |#; — 24| < % + 7. Now we need to bound A, but

looking at the polynomial expression for A, B and C, and applying the bounds
given in Theorem 2.2.3 we get

A<A% . X532,
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for a constant vk depending only on the number field K; so

VA <y X
then we can replace 7 by the upper bound g - € - X3/%. In particular, when
K = Q(i) it is easy to see that yx < 10* O

Corollary C.1.12. If we suppose K = Q(i), X < 10, e = 107® and exact
arithmetic we get

|[d — 21]|d — x2| — |d — 21]|d — d2|| < 10724,

Proposition C.1.13. Let A = 2Ad + B. The additional error § given by
machine operations is

A2
§<3.¢c- (|A|+\/Z)
where ¢ is the machine error for one simple operation.

Proof. Since A, B and C are exact numbers, we just need to take into account
the operations involving v A. let us write

|d — 21| |d — x| =

147
‘)\—\/ZH)\-F\/Z‘
142

Now R R )

‘(A@\/Z) —(/\—\/E)‘ §5(|A|+\/Z>

And

‘(/\@\/X) —(A+\/K)‘ §5(|A|+\/Z)

So

(MO VA) x (A VA) < (1+e)2(A| + VA)?

(he VA& (& VA) - (- VA) x (A + VA)|
< e(14 (A + VA + 2:(|A| + VA) + e2(|]A + VA) = err
Finally the machine error obtained after the division by 4A? is
[do & ®|de &5] — |d— &1 |d — &2|

o (L err+ (N + VA)2e
- 427

< 2e(|A| + \/K)Q +e% f(\Ae),

and it is easy to see that for sufficiently small £, we can bound

)

so we conclude. O

2 f(\Ae) §5(’A+\/X
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Corollary C.1.14. If we suppose K = Q(i), X < 10°, e = 1073® and machine
operations, we get
§ <107

Proof. Recall that R
VA < g - (1+¢) - X34

In the same way we can prove
A < 0x X34,

for a constant dx depending only on K. In particular if K = Q(i) we obtain

VA < 104X3/4

and
IA| < 3000X°3/4,
So .
Al + VA < 13000X°%/4,
and we conclude. O
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Appendix D

This appendix gives the polynomials used in §2.5.1 to check rigorously the
boundary conditions in the reduction inequalities.

Section D.1 gives the Maple code used to compute the polynomial gP asso-
ciated to the binary cubic form

F = az® + bx’y + cxy® + dy® = a(z — a1y)(z — azy)(z — asy).
It belongs to K[X] and vanishes at
jaa[* + |as | + Jas[*.
Similarly gR vanishes at
(leaPlozl* + a1 Plas]? + |az*|as]?),

gQ vanishes at
2 = Q10203 + a1z + o ig.

Finally, gReQ, gImQ vanish at 2Re(z) and 2Im(z) respectively.
The resulting expressions are polynomials in Zley, es, es, f1, fo, f3, X], where
the e; stand for the elementary symmetric functions:
e1=oa1+ay+ a3 =—b/a,
€2 = a1ag + arag + asag = ¢/a,

es = ayjanag = —d/a.

The f; stand for their conjugates.

These polynomials are used by the GP functions in §D.2, with numeric
arguments for a,b, ¢, d € Ok, yielding univariate polynomials in K[X].
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D.1 Maple code

st s s s s s S s s s S s s s s i e R e S e e S R
# ai corresponds to \alpha_i, bi to \overline{\alpha_i}

Sa := al+a2+a3=el, al*a2+al*a3d3+a2*¥a3=e2, al*a2*a3=e3:

Sb := bl+b2+b3=f1, bl*b2+blx*b3+b2*b3=f2, blxb2xb3=£3:

# sigma = [123, 132, 213, 231, 312, 321]

sigma[1]:= e -> e:

sigmal[2]:= e -> subs({ b2=b3, b3=b2}, e):
sigma[3]:= e -> subs({b1=b2, b2=b1 }, e):
sigma[4]:= e -> subs({b1l=b2, b2=b3, b3=bl}, e):
sigma[5]:= e -> subs({b1l=b3, b2=bl, b3=b2}, e):
sigmal[6]:= e -> subs({b1=b3, b3=bi1}, e):

# expand \prod (X-\sigma_i(s))
# then substitute the elementary symmetric functions

POL := proc (s) local P, Q;
P := mul(X-sigmal[i](s), i=1..6);
Q := simplify(P, {Sa,Sb}, [al,a2,a3,b1,b2,b3]);

sort (collect(Q,X), X);
end:
HHHS S R R S R S S R R S R R

gP := POL(al*bl + a2+b2 + a3*b3);
gR := POL(al*a2xbl*b2 + al*a3*bl*b3 + a2%a3*b2*b3);
gQ := POL(bl*a2*a3 + al*b2+a3 + al*a2*b3);

gReQ := POL(bl*a2*a3 + al*b2*b3 + alxb2xa3 + bl*a2*b3 + alxa2xb3 + bl*b2*a3);
gImQ := POL(-al*b2*b3 + bl*a2+a3 - bl*a2*b3 + al*b2*a3 - blxb2*a3 + al*a2*b3);

D.2 GP code

gP(a,b,c,d)=
{ my(el = -b/a, €2 = c/a, e3 = -d/a);
my(f1 = conj(el), 2 = conj(e2), £3 = conj(e3));

X~6

-24%f1%el*X"5

+(£172%e1"2+2%f2%e1"2+2%f1"2%e2-6*f2*%e2) *X 4+

(-2*%£1~3*%e3-27*f3*e3+9*f3%e2*el-2xf3%e1~3-2%f1%f2%e1"~3+9*f2*xf1xe3+ B*f1xf2%xe2*el-2%f1~3xel*e2)*X~3+

(-6%£2~2+e2xel1~2-9+f3*xf1xe2kel " 2+f1"4*e2"2-6%f1"24f24e2~2+2+f1 ~4d%e3*el+
27xf3*f1xe3*el+f2"2%el1"4+2+f3+f1%xel1~4+9%f2"2%e2"2+3*%f1"2*%f2*el " 24e2
-9xf1-2xf2%e3*el) *X~2+

(15*%£1~3*f2xe3%e2-f2"2xf1*xe1~3%e2-2%f1"5*e2%e3+81*f3*f2*e3%e2+3*£2~2*f1xe2"2xel
-f1~3%f2%e2~2%e1-27*f3*f2%e2~2%e1+9*f3*f1~2%e2~2%el-27*f2"2*xf1*e3*e2-27*f3%f1~2*e3*e2
-2%f3%f2+e1"5-2+f3%f1"2%e1"3*%e2+9*f2"2*f14e3%el1"2-27*f3*xf2*xe3*el1~2+15*%f3*f2*e24el"3
-2%f1~3%f2*e3*%el~2) *X+

£176%e3°2+£2°2%f1"2%e1"~3*e3+f3*f2*xf1*xel~4*e2-27*f£2"3%e372-27*f£3"2%e2"3+f1~4*f2*el*e2%e3
+27*£272%f1~2%e3~2-4*£2"3%e2~3-9*f2xf 1 xf3%e2~2%e1~2+27*f3"2*e2~2%e1~2-4xf2"3xe3*el"3
+9xf3%f2xf1%e3%el~3-2%f3*%f1~3*e3*el1~3+f3"2%el1"6+f1"3*f3*e2~2%el1~2+18*f2xf1%f3*%e2"3
-9%£3"2%e2%el1"4+18%f2"3*e3*e2%el-9*%f1"44f2%e3"2-27+L3*xf2xf1*e3*e2*%el1+9*f3*f1~3*%e3*e2*el
-9%£2724f1"2%e3%e2%el+f2"2%f1"2%e2"3+f2"3%e2"2%e1"2-4%f1"3%xf3%e2"~3;

};

gR(a,b,c,d)=

{ my(el = -b/a, e2 = c/a, e3 = -d/a);
my(f1 = conj(el), £2 = conj(e2), £3 = conj(e3));
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X~6-2%f2xe2*X 5+ (2*f3*f1%e2"~2-6xf3*xf1*e3*el+2xf2 " 2xe3*e1+f2"2%e2°2) *X~4+
(9*£3*f2xf1%e372-2+f3"2%e2"3-2*f2"3%e372-27+f3"2%e3"2+9*f3 " 2%e3*e2*e1+5xf3*f2xf1xe3*e2*el
-2%f2+f1xf3%e2"3-2%xf2"3*e3xe2kel) X3+ (27*£3"2+f24e3"24e2-9%f3~24f2+e3*e2 " 2xel
+9%e372%f372%f1"2%el1~2+£3"24f1"24e274-6*f3"2%f1~2%e3*e2"2%e1+2*%f3"2+f24%e2"4+2%e3~2%xf2"4%e2
-6x£272+f1%f3%e3"2%e1"2-9%e3"2*f3*f2"2xf1¥e2+f2"4*e1"2%e3"2+3*£3*f2"2xf1*e2 " 2%e1%e3) *X "2+
(9*£3"2%f2~2%e2%e3"2%e1"2-2%f2"5*%e3"3*e1-£3~2%f2*f1"2%e2"3*e1*e3-2%£3"3xf1%e2"5
+3*£372%f1724f2%e2%e3"2%e1"2+9%e3 7 2% £ 3" 24 f2%f1"2%e2"2-£2"3*f 1xf3*e3"2%e2%el"~2
-27%£3~3%f1%e3"2%e2%el1~2+15%f3"3*f1ke3*e2"3%xel-2%xf3"2%f2"2%e2"3*%el*e3
-27%£3~2%f1°2%f2%e3"3*%el1+81%f3"3*%f1*%e3~3*%el+16*f3*f1xf2"3%xe3 " 3%el-27*f3~3*f1%e3"2%e2~2
-27%£3~2%f2"2%e3"3xe1-2%e3"2*f3*£2"3xf1%e2"2) *X+£2"6*e3~4-27*£3~3*f1~3%e3"4
+£3~3%el1~2xf1~3%e3"2%xe2"2+f3"3*f2xf1%e2"4*el*e3-4*%e3~2%f3~3%f1~3%e2"3
+27*£3~2%xf2"2%f1"2%e3"4-4*%f3"3*%f1"3%e3"3%el1~3-27*f3"4*%e3"3*el"3
+18%f3~3*f1*f2*%e3~3*%el~3+£374%e2"6+9%£3"2xf2"3%e3"3*e2*el
+18*%£3~3*%f1~3%e3"3*e2*el-9*f3~4*e3*%e2"4*el+f3~2*%f2"2%f1"2%e3"3*%el"3
-9*f3~24f2~2%f1~2%e3"3*%e2*%el+f3~2%e3~2*%f2"3*%e2"2%el1"2
-2%e3724f3~24f2~3%e2~3-9%f3*xf2~4*f1*e3~4-4*f3~2%f2~3%e3"3%el"3
+e372%f372%f2"2%f1"2%e2"3+9%e3"2+£3" 3+ 2xf1%e2"3+£3*f2"4*f14e3 " 3*e2*el

-9#£373%e3 2% f1xf2%e2"2%e1"2-274£3"3+%f1*%f24e3 " 3%e2%e1+27*f3~4*e3"2%e2"2%el1"2;

};

gQ(a,b,c,d)=
{ my(el = -b/a, €2 = c/a, e3 = -d/a);
my(f1 = conj(el), f2 = conj(e2), £3 = conj(e3));

X~6-2%f1%e2*%X 5+ (£1"2%e2"2+2+f 1~ 2%e3*%e1+2xf2%e2~2-6*f2%e3xel) *X~4
+(9xf2%f1%e372-2%Ff1"3*e3"2-2*f 1k f2%e2"3+9*fI*e3*e2+el-27*f3*e3"2-2xf3*e2"3
+b*xf2*flke3*e2*el-2%f1~3kel*e2+e3) *X 3+ (-6*f1~2%f2%e3 " 2*el ~2+2*f3*f1%e2"4
+9%e372%f2"2%el1~2+3*%f1~24f24e2 " 2%el*e3+f2"2%e2"4+27*f3*f1*%e3 " 2%e2+f1 4*e3"2%el"~2
-6xf2"2%e3%e2"2%e1+2%e3"2xf1"4%e2-9*f3*xf1*xe3*%e2"2%e1-9*xe32*f2*f1"2%e2) *X~2
+(9*f3%f1°2%e3"2xe2%e1"2-2%e3~2*%f1"3*f2%e2"2+15%f1"3*f2%e3"3*e1+15*xf3*f2xe3%e2"3%el
-f1%f2"2%xe2"3*el*e3-27*f2"2%f1*%e3 " 3%el-27*f3*f1"2%e3"3*%el-27*f3*f24%e3 " 2%e2%el"2
-2%f3%f1~2%e2"3*el*e3-f1"3*%f24e3 " 2%e2+el~2-2%f1"b*e3~3*el+9*%e3 " 2%f2"2*f14e2"2
-27#f£3*%f2%e3724e2"2+81*f3*f2*%e3"3ke1+3*f2 " 2xf1*e3"2*e2xel1~2-2%f2%f3*e2~5) *#X
-2%e3"24f1"3*f3%e2"3+9%f1~3*%f3*%e3"3*e2*el-9*e32*f3*xf2xf1*xe2"2%el~2+f1~4*f2%e3 " 3*xe2*el
-27x£3%f2%f1%e3~3%e2%el-9*f2~2*xf1~2%e3"~3*%e2*xel+e3"2*xf2"3*e2~2%e1~2+18*f3*xf2xf1*xe3~3%el"3
+£272%f1~2%e3"3%el~3+f1"6%e3"4-4*f2"3%e3"3%el ~3+27*f2"2%f1"2%e3"4-9*f1~4*f2%e3"4
+e372%f1~3%f3%e2"2%e1"2+18%f2"3%e3"3%e2*%el+f24f1xf3*e2"4*el%e3+27+f3"2%e3"2%e2"2%el1"2
-9%f3"2%e3%e2"4*el+9%e3"2*f3*f2xf1%e2"3+£3"2%e2"6+e372xf2"2xf1"2%e2"3
-4xf1~3%f3%e3"3%e1~3-27*f3"2*%e3"3%e1"3-4%e3"2%xf2"3%e2~3-27*f2~3*%e3"4;

};

gImQ(a,b,c,d)=
{ my(el = -b/a, €2 = c/a, e3 = -d/a);
my(f1 = conj(el), £2 = conj(e2), £3 = conj(e3));

X6

+ (-2%f1xe2+2%f2%el)*X~5

+ (-3%e3*f1*f2+2%e2 2+ 2+2%f 2" 2%e2-3*el*e2*f3+e2"2%f1°2+27*e3*£3-6xe3*f2*el -
6xf3xf1xe2+2*el " 2xf3*xf1-3kel*e2*f1xf2+2%e3*f1 " 24el+el~2xf2°2) *X~4+(-2%e3"2*f1°3 -
27%e372%f3-2%e2"3*f3-4%e3%el1"2%f2"2+4%e2"2*xf1~2%f3-2%e2 " 2%f1%f2"2+6%e2 " 2%f2%f3 +
2%el4e2"24%f272-6%e3%f2"2%xe2-2%e2"3*f1*f2+9*%e3 " 2+%f1%f2+9*e2*e3*xf3*xel+2*%e3*el~2*%f24f1"2 +
6xe3xf1~2xf3*%el-bxe3*xf1*%f22*%el-6*e3*%el " 2*%f1*f3+27xe3*f2*f3*%el-e1 " 2*f15f2"2%e2 -
2xel1~2xf1~2xf3%e2-5xel~2xf2xf3*e2+5*e3*f2*xf1~2%e2-27*e3*xf1*f3*%e2+bkel*e2"2*xf1%f3 +
elxe2"2%f2%f172-2%el*e2*%f1"3*e3+b*e2*e3*f1xf2%xel+2%el ~3*%f3"2+2%el1 " 3*f2*xf1%f3 -
bre2kel*f2*f14f3+24e3*£2~3+27xe3*xf3"2+2%e2*el*xf2"3-9%e2xel*f3~2-9*e3*xf2xf1*f3) xX~3

+ (e274%f272-2%el1~3%e3%f2"3+9%e3"2%f1~2%f2"2+6*el*e2*e3*%f2"3+el1 " 3*e3*f1-2%f2"2 -
T2%el*e2%e3*xf1*f2xf3+3*el*e2*e3*f1~2%f2"2+6%el*e2%e3*%f1~3*xf3+6%el~3*e3*f1xf2*£f3 -
2xel1~3xe3*f1~3*f3+9%el1~2%e2~2%xf3~2-2%e2"3*%f1~3*f3+e2"3*f1~2%f2~2+e1"2%e2"2*f2"3 -
27%e372%f273-27%e2"3%f372-2%e2"3%f2"3+e1"2%e2"2%f 1" 3%f3+6%e2"3*f1*f2%f3 +
3*kel~24e2"24f1+f2+f3+9%e3"2%e1"2%f2"2+2%e2 " 4*f3*f1+e3 " 2%el1"2*f1"4+2%e2%e3~2%f1"4 -
6xe2~2xe3*f2"2%e1+27%e3 " 2%f3*f1"2*%el1+18%e3"2*%f2"2+f1%el1-108%e3 " 2*%f2*f3*el-e2"3*xel*f2"2*f1 -
2xe2~3xel*f3*f1~2-5%e2"3xel*xf2*f3+27*e2"2%e3*f2%£3+3%e2"2%e3*f2"2+f1+27*e3~2*f3*f1%e2 -
Oxe2%e3~2xf2*f1~2-5%e3~2xel1*xf2*f1~3-6%e3"2%e1~2+f2xf1~2-2%e2"2%f2+f1~3*e3-9%e2~2%e3*f3*f1x*
el+18*e2+e3%el"2+f2+f3+3%e2*e3*el " 2*xf3*f1"2-e2%el1"2+%f2+f1~3%e3+3*%e2"2*%el*f2%f1"2%e3 -
27%e3*el ~3*f3"2+2%el*xe3*f2"4-27*e3"2%f1"3%f3+81%e3 " 24f2*f1+%f3+3*e3*el 2% f2*f1"2*f3 +
27*el*e3*f2xf372+81*el*e2%e3*f3°2-2%e3*%el~2xf1*%f2"3+27*el1~2%e3*f1+£3~2+27*e3*e2*f3*%£2°2 -
5xe3ke2*f1*xf2~3-9xelke3*f22*xf1*xf3+18%e3*e2xf2*f1~2*%f3-108*e2*e3*f1*%f3~2+9*%e2~2*f1~2%£3~2 +
18%el*e2~2+f1xf3~2-9%e2%el1~2+f2xf3~2-6%e2xel1~2%xf1~2+f3~2-b*e2%el~3*f1%xf3~2+2%el1~4*f2%f3~2 +
el1"4%f1"2+%£3"2+3%e2"2%el*xf3%f2"2-e2"2%el*f14%f2"3-2%e2%el1"3*£3*%f2"2-6%e2~2%f2"2%f1*f3 +
e2"2%f2"4+3xe2*el " 2*f2~2xf1xf3-e2*el ~3*f24f1~2%f3) xX~2

+ (- 33*%e2%e3"2%el*f1"3*f3-6%e2%el1xe3"2*f1"2*f2~2+3%e2*e3%e1 " 3*f3*f2~2+18%e2*e3*e1~3*xf1*£3°2 -
2xe2~bxf2xf3-6%e3"2%el*f274-2xel*e3"3*f1"5+2%el1"b*f1*xf3~3+81%e3~3*f2xf3*%el -
27%e2"2%e372+%f2%f3+9%e3"2%e2"2%f272*%f1-2%e3"2%e2 " 2%f2%f1"3-27*el*e3"3*f1"2*%f3 -
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27xel*e3~3*f2~2xf1+1b*xel*e3"3*f2*xf1~3+16%e3*e2~3*xf2xf3*el1-27*e2%el~2%e3~2*xf2xf3 -
el*xe2"3*%f272%f1*e3+9*e2%e3 " 2%el1"2*f1"2%f3+3*%e2%e3"2%el " 2%f2"2+f1-e2%e3"2%el1~2*f2%f1"3 -
2%elxe2~3*%f1"24f3*e3+e2"2%el~2%f2"2xf1"2%e3+54%e3"3%f2"3-54+e2"3+%£3"3-33*e3*e2"3*f2xf1*f3 -
2%e3*el*e2"2%f1"4*f3-e3%e2"2%el*f1"3%f2~2-3%e2%el1"4*%f3"3+2%e2+e3+f2"5-3%e3%e2"2xf2xf1~3*f3 +
6%e2~2%el1~2%f2xf1%£372-3%e2"2%e1xf2xf1~2%£372+27*xe2%e3*£3~2*f2~2+2*e2%e3%e1~2*f2"4 +
27xe3%e2"~3*f3"2+2%e3*%e2~3%xf2~3-b*xe2*e3"2*f1~3*f2~2+6%e2%e3~2%xf1~4%f3-81xe2*e3*f1*x£3~3 -
18%e2%e3"2%el*f2~3-81*e2%e3"2*%el*f3"2-4%e3%e2"2+%f2"4+81%e2%e3"2*f1%£372-108*e2%e3 " 24%f3%f2"2
+18%e2%e3"2%f1%f2~3+3*%e2"44el+f3"2+81*e2%e3*el1*f3~3+27*e2"2%e1"2*%f3"3-15%e2%e1"3*f1%£f3~3 +
2%e2%xel1~3%f3"2%f2°2-15%e2%e3*f3*f1%f2~3+27*e2%e3*f2xf1"2%f3"2+8*e3*%e2~3*f1~3*%f3 -
27xe3%e2"2%el~2x£3~2-27*e3%e2 " 2*f1~2*f3~2+2*e3%e2"2xf1~2x£2~3+108*e3*e2~2*xf2%f3~2 -
O%elxe2~2xf3~2xf2~2+18%e2xel*e3*f1~3*f3~2+27*el*e2"2*xf1*xf3~3-3*%e2*el*e3xf1x£f2~4 +
33*%e2*%el*e3*f3%f2"3-b%el"2%e2"3*f1*xf3"2+3*%e2%e3 " 2%el*f2+4f1~4-18%e2"3*el*xf2xf3"2 -
3%e2"3%el*f1724f372+5%e2"2*%el1"3*f2*xf32-3%e2%el~4*f2*xf14f3~2+e2*%el " 3*f24f1~2%f3"2 +
2%e1~3%e3~2%f1~3*%f3+3%e3"3*f1"4*f2+2%e1~3%e3~2%f273-27*e3"3*f1"2%£272-81%e3"3*£2*f1%£3 +
27xe3~3xf1~3%f£3-27*%e3"~2%f3*%f2~3-54%e3~2*%f1~3*%£3~2-3%e3~2*xf1*f2~4+54%e3"2%e1~3*£f3"2 +
27xe3%el~2xf1*f3~3-81%el*e3~2*%f2+xf3~2+108*el*e3~2*f1~2*f3~2-27*%e3%e1~3*f3~3-108*el1~2%
e3"2xf1%f3"2+4%el1"2%e3"2*f1~4*f3-9%e3*el " 2xf2+f1~2%f3~2-2%e372%el1~2%f1"3*%f2"2 +
27*%e3"2%el1 " 2*%f3*f272+3+%e3 " 2%e1~2%xf1xf2"3+81%e3~2*%f24f1*f3"2+27%e3"2%£3*f1"2%f2~2 +
33xe3%el " 3*f2*xf1#£372-18%el*e3~2%xf2xf1~3*f3-4*e3xel~4xf1~2%xf3"2-6%e3*el~4*f2%xf3~2 -
2%e3xel1~3xf1~3%xf3"2-8*e3*el ~3*f3*xf2~3+2*e3*el ~4*f2"2*xf1*xf3+2*e3*el~24f3*xf1x£2~3 -
18%e3~2%el1~3*f2*f1*xf3+b*xel*e3"2+%f1~2+%f2~3-6%e3%e2"2%el1~2*f2*xf1xf3+15%e3%e2~2kel*f2*xf1~2%f3 -
15%e2%e3%el1~2+f2"2%xf1xf3+135%e2*%e3 " 2*%el+f2+%f1+f3+2%e2"2%el1~3%f1"2%f3"2-e2"2*%el1~2+%f3+f1"2%xf2"2
+e2"2xel*f3xf1xf2"3+e2 " 2%el1 " 3*%f2"2%f1*f3+el*e2"3*f2+f1~3%f3+3%e2 " 4xel*f2xf1xf3 -
2%e2~3*%f1~3*%f3"2+6%e2*el*e3*f3xf1~2%xf2"2-e2%e3*%el1~3xf1*£2~3-13b*e2*el*e3*f2*f1*x£3~2 -
2%e2~4*xf2xf1~2%f3-2%e2"3%el1~2*xf3*xf2~2+e2%e3%e1~2xf1~2%xf2~3+18%e2~3*f2xf1*£3~2+6%e2~4*f1x£3"2
+4%e2~4*f3*xf2"2-2%e2"3%f3*f2"3-e2"3*xel1~24f2xf1~24f3) *X
+ 27*e3*%e2"3*f2*xf3"24%el+10%e2"2%el1~2%e3*f1"3*%£37"2-27*e24e3"2+%f1"3*%£3"2%el -
15%e2%e3%el~3*f3~2%f272+27*e2%e3*el~3*f1*£373-27*e2%e3%el " 2%f1~2%x£3~3-27*e2*%e3*f2*xf1*f3"3*el +
15*%e3*el~2%e2"3*f1%f3~2+27%e2"2%e3*x£372xf2"2xel1-27*e2"2%e3"2xf1*£3"2%e1-9*e2~2xe3%el~3*xf2*£3~2
-15%e3%e2~3*f1~2xf3"2%el-6xe2"2xe3%el~3*f1~2%f3~2+18*e2*e3*f1~3%f3~3*%el -
27*xe2%el1"3*%e3 " 2*%f1+%£372-T+e2%e3*el~3*f2xf1~2%f3"2+54*%e2%e3 " 2+%f2*%f1+xf3 " 2%el +
b*xe2xe3%el ~4*f2*xf1%xf372-81%e3 " 3*%f1"2%f3"2%e1+81%e3"2*f1~2%f3~3*el-9*e2%e3*£3~24f1~2%f2"2%el -
27*xe2%e3*el~2*%f24f3"3+3%e2%e3%el~2xf2xf1~"3*f3"2+27*e24el1~2%e3 2+ 2*f3~2+27*e2%el1 2%
e372xf1~2%xf372+9%e2%e3*£3~2%f2"3*%el1+9%e3"2%el1~4*f1~2*%f3~2+81%el1~2%e3~3*f1*x£3~2 -
12%e3~2%e1~3*%f1~3*f3~2-2%e3*%el1~3*xf3~2%xf2~3-81*%e2~2%e3~2xf2%£3°2-27*e2~2%e3*%f1~2*£f3~3 +
81%e2"2%e3*f2*f£373+27%e2"2%e3"2+f1"2%f3"2+18%e2*%e3*el~24f14%f3"2+%f2"2+9%e3*el1~3*f2xf1%£3"3 -
2%e3*el ~4*xf1%f3"2*%f272-27%e3 2% 1*xf3"2%f2"2%e1-27*%e3 " 2*f2+%f1"3+%£3"2%el1-27*el1~3%e3~2*f2xf1*xf£3"2
-6%e2~2%e3*%f1~4%f3"2%el+tel~4*f2xf1*x£3"3%e2-e2"3xel*f2*f1~3*£372+3%e2"3xel~2xf2xf1~2%£3"2 +
3%e2~3*el*xf1x£3~2%f2"2+b%el*e2 4*xf2xf1*£3~2-2%e2"3*e1~3*xf2*xf1*£3~2-e2"2%xel1~3xf1*£3~2%£2"2 +
€2~ 2xel1~2xf3~2xf2"3+e2"2%e1~2%xf1~3%f3~3-2%e2~2%e1~3*%f1~2*xf3~3+15%e2~2%e1~3*f2*f3~3 +
2%e2~2%el ~4*xf1%f3"3+e2"2%el1"4*£3~2%f2"2+8*%e3*e2"3*f1"3*f£3"2+18%e2"3*f2*f1*f3~3 +
9*%e2~3*%el*f1"24f373-9%e2"3%el"2+f1%f3~3-6%e2"3*%el " 2%f3"2*%f2"2-27+e2"3%el*f2*f3~3 -
4*e3xel1~3xf1~3%f3"3+2%e3*el ~5*f3~2*%f2~2+6*%e3*%el1~4*f1"2*f3~3-6%e3*el~bxf1*%£3"3 -
81xe3~2xel~2xf1*f3~3+9%e3"2%el1~2%xf1~4%f3~2-27+e2"2%e3*xf1*£3~2*£2"2+9%e2~2*e3*xf2xf1~3%£3~2 +
27xe2~2xe3*el*f14%f3~3+27%e32*f2+f1~2+f3"2%e2-6%e2"b*f2+f3~2+2%e2"5*f1~2%£f3"2 -
4%e2~3*%f1~3*%£373-44%e2"3%£3"2%f2"3+e2"4*f1~4*f3"2+9*el*e2"4*f3"3+9%e2"4*£3"2%f2~2 +
2%e3"2%el1~2*%f2"5+e3"2%el1"4+f2"4-6%e2%e3~2%xf2"5-4*%e3"24%e2"34%f2"3+9%e3"2%e2"2%f2~4 -
9%e3~4*f1~4*f2-4%el1~3%e3"3*f2"3+27*e3~4*f1~2%£2°2-2%e3"3*f1~3*£2~3+27* e3~3*f3*f2~3 +
27%e3~3%xf1~3*x£372+9%e3"3*f1%f2~4-27*e3"2+f1~3*%f3"3+e2~3*%f3~2*f1~2%f2~2-81%e3~2%f3~2%f2~2%e2
+e372%el"2%xf1"2%f2"4-2%e3 " 2%el"3*f1%f274-2%e3"2%el*f1*f2"5-9%e2 " 2%el1~2%f2xf1xf3~3 -
274e3%e2"3xf2*xf14£372+9%e2%e3 " 3*el*f1~34%f3-9%e2*%el*e3~3*xf1 " 2%xf2"2+9%e2%e3"2%el1~3*f3%xf2"2 -
6xe2~4xf2%f1"24f3"2-2%el4e2"5*f1xf3~2+e2"4*%el1 " 2*%f1"2*%f3"2+24e2"4*el1~2xf2xf3"2 -
2%elxe2~4xf1~3%xf3°2-2%el1 b*f2*xf3~3*%e2+e3"2%f2"6-27*e3~4*xf2~3+e3"4*f1"6+e2"6*£3"2 -
27%e2~3%f3"4+e1"6+f3°4-27*%e3"3*e1"3%xf3"2+27*e3"2%e1~3xf3~3-9*e2*el1~4*f3~4 +
27%e272%e1"2%f3"4+27%e3%e2"3*%f3"3-2%e2"3%e1"3*f3"3-9%e3*e2"4*f3"2%el-54%e2~2%e3*el1"2%£3"3 +
27*%e2"2%e3"2%el1"2*f3"2+9%e2%e3%el1~4xf3"3+2*%e2*%e3"2*%f1"24f2"4-6%e2%e3"2%el"2%f274 +
15%e2%e3"3*%f1"3*%f2°2+18%e2*%e3"3*%el*f2~3+81*%e2%e3 " 3*f3*xf2-2-27*e2%e3~3*f1xf2"3 +
2%e3~2%e2~2%f1~b*f3-2%e3"2%e2"3*f1~3*f3+e3"2%e2"2%e1~2*f2~3-6%e3"2%e2~2xf1~2%xf2~3 -
2%e2xe3~3xf2xf1"5+e3"2%e2~2xf1~4*xf2~2+e2"3%e3"24f1"24f2~2-4%e1~3%e3~3%f1~3*%f3 +
el1~3%e3"3*%f1"24%f2"2+27+e3"2%e1~2%f3"2%xf2"2+27*%e3"2*%£3"24f1"2%f2"2+6%e1"2%e3"3*f1~4*f3 -
2*%e373*%el~2%f1"3%£2°2-27*%e3"3*%el~2xf3%f2"2+9%e3"3*%el1 " 2*f1%f2~3+e1~3*f3"2%f1"2*f2"2*e3 +
e372xe2"2xel1"2%f1"3%f3+3%e3"2%e2"2%el*f1*¥f2"3+9%e3"2%e2 " 3*f2*xf1*f3-24e3~2*el*e2"2%f1"4*f3 -
e372xe2"2xelxf1~3%f272-27*%e3"2%e2 " 2xel*f3%f2~2-15%e3"2%e2~2*f2*xf1~3*f£3+27*e3~2%e2~2%xf2~2*xf1%f3
-9%e2%e3~2+f3*xf1~3*f272+27xe2%e3"2*f3*F1x£f2~3-27* e2xe3"3*xf2*f1~2xf3-2xe2*el*e3~2%f1~3%f2~3 +
bxe2xel*e3 " 2%f1*%f274-27+e2%el*e3"2%xf3%f2"3+e2*%e3 " 3*el+f2+%f1"4-27*e3"3%el~2%f2xf1"2*xf3 +
27%e372%e1"2%f2*%f1~2%£3~2+27*el1%e3"3*f2 " 2%f1%f3-54%e3~3*xf3*f1"2%f2"2+9%e3"3*f3*xf24%f1°4 +
8%e3~2%el1~3*%f3*xf2"3-9%e3"2*f3*xf1*¥f2"4+2%el*e3"3*f1~4*f2~2-6*el*e3"3*f1"5*f3 -
9%elxe3~3xf1~2xf2"3+6%e2"4*f3*f2"2%e3-12%e2"3*f3*xf2"3*xe3+6%e2~2*%f3*f2"4xe3 +
27xel*e3"3*f2*xf1~3%f3+165%e3"2%e1*xf3*xf1~2+f2~3+10%e3~2%xe1~3*xf3*f1~2xf2~2-6+e3~2%el1~4+f2~2+f1%f3
-15%e372%el1 " 2%f3*f1%f2"3+18%e3"3*el " 3*f2xf1xf3-6%e3"2%el ~2%f3%f1"3%f2"2 -
9%e3~2%e2"2%el " 24f2+f1+4f3+18%e3"2%e2 " 2%e1*xf2%f1"2%f3+3*e24%e3 241 "3*f2+f1"2%f3 -
27xe2%e3"~3xel*f2*xf1%f3-T*e2%e3"2%el1~2%f2+f1~3+f3-6%e2"2%el1~2*xf3*f1~25f2"2%e3 +
3%e2~2%el1*xf3*xf1~3+f2"2%e3-T*e2 " 2*xel1*xf3*xf1xf2~3%e3+3%e2"2%el1~3*f2~2*f1xf3*%e3 +
bxe2xel*e3 " 2*%f3*f2+%f1"4+3%el*e2"3*f2*f1~3*f3*ke3+e2"4*el*f2+xf1+f3%e3-T*e2 " 3*el*f2"2xf1%xf3%e3 +
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3xe2kxel " 3*xf3*f1xf2~3*%e3-e2%e3~2%el~3*xf1*f2"3-2%e2"3*f3*f2*xf1~4*e3+10%e2~3*xf3*f1~2%f2"2%e3 -
2%e2"4%f2%f1"2+f3%e3-2%e2"3%el " 2%f3*f2"2%e3+3%e2%e3"2%e1"2%f1~2%f2~3-2%e2"2%f3*%f1"2%f2"3%e3 +
10%e272%el1"2*f3%f2"3*%e3-e2*%el~24f3+f1"2+%f2"3%e3-2%e2*el~4*f3*f2"3*e3-2%e2%el ~2%f3*f2"4*%e3 +
elxe2*f3*xf1%f2"4*e3-e2~3%el~2%f2%xf1"2*%f3%e3

}

gReQ(a,b,c,d)=
{ my(el = -b/a, €2 = c/a, e3 = -d/a);
my(f1 = conj(el), f2 = conj(e2), £3 = conj(e3));

X~6+(-2%f2%e1-2%f1%e2) *X "5+ (£1"2%e2"2+24f2%e2~2-6*F3*f1%e2+2* 2~ 2*e2+3*xf 1 ¥f2*e2*el
+3*f2*f1%e3-27*f3*xe3+24f1"24e3*el-6+f2xe3*el+f2"2*el ~2+3*f3*xe2*el+2*f3*xf1%xel~2)*X"4
+(-£f172%f2%xe2"2xel1+9*xf3"2xe2*el-2xf1~3kxel*e2*e3+I*f2%f1*%e3"2+5*f2*f1xe3*e2*el
+9xf3*e3*%e2%el-2%f2"3*el*e2-b*f1"2%f2*%e3*e2-2%f3"2%e1~3-2*%f1*f2%e2~3-f2"2*%f1*el1"2%e2
-5*f3*f2%el~2%xe2-5xf3xf1ke2~2%el+27*f3*xf1¥xe3*e2-2%f3%f1~2%el " 2¥e2+5*f2xf1xf3*e2%el
-2%f272%f1%e2~2+4%f2~2%e3%el1~2+27*f3*xf2%e3*e1-5xf2~2xf1*e3*el+6*f3*%f1~2*%e3*el+6*f2~2%e3*e2
+9*f3*f2xf1%e3-2%f3*%e273-27+f3%e372-2+%f1"3*%e372-2%f2"3*%e3-27*f3"2+e3+6+L3*xf1*e3*el~2
-2%f1°2+f2%e3*el1"2-24%f2+f1xf3*el " 3+6*f3*xf2*e2~2-2*xf2~2xe2"2kxel+4*f3*f1~2%e2~2)*X"~3
+(27*£3*f1%e32%e2+f1"4*e3"2%e1"2-6+L2"2*%f 1% £3%e2"2+24£3*f 1~ 2%e1%e2"~3-27*£3xf2%e2"2%e3
-3%f2724f1%e2"2%e3-6%f1"25%f2%e3"2%e1~2+2%e3 "~ 2%f1~4%e2+3*f1~2*f2*e2~2*xel*e3
-9%e3"24f2+f1~2%e2-6+f2"2%e3%e2~2%e1-18*f3*f2*xf1~2ke3*e2+2*%f2~4*e3*xel+f3~24xf1~2%el~4
-18*£3*f2%e3*e2%el1~2+2%f2"3*%f1*e3*%el~2-9+%£3"2%f2%e2%el1~2-6%f3~2%f1"2%e2%el"2
-27#£3~2xf1xe3*%el1~2+108*£3"2*f14e3*%e2+81+f3*f2+f1%e3~2-9*f3*f1*e3*e2"2%el-27*f2"3%e3"2
+9%e372+£272%e1~2+f272%f1"2%e1"3*%e3+2*f3*f1*¥e2"4+81*f3"2*e3*e2*el-2¥xf2~3%e2"3
-27x£3~2%e2~3+b*xf2"3*xf1*e3xe2+5xf3~2xf1xel~3*e2+2%f2~2xf3*el~3*e2+5*f3*xf2*el*e2"3
-3*f3*f1"2%e3*el1"2%e2-27*f2"2%f3*%e3*%e2+9*%f2"2%f1"2%xe3"2+f2" 2% fl*xel*e2"3+f2"3*f1*e2"2xel
-18%£3"2%f1%xe2"2%el-3*f2"2*%f34%e2"2%el1-27+£3%f1"2%e3"2*%el1-9*f2~2*%f14f3*e3*el
+£173*%f2%el1"2%e2*%e3+108*f3*%f2%e3"2%e1+27+£3"2%f2%e3%el-18*%f2"2*%f1%e3 " 2%el
+3*£272+f1xf3%el1 " 2%e2+f2*%f1~2%f3*%el1"3%e2-27xf1"3*xf3%e3~2+2+f1~3*%f2xe2"2%e3+f2"2%e2"4
+6*£3*f2xf1*%e3%el~3+3*f2*xf1*xf3*e2"2%el1~2+9%f3~2%e2~2%e1~2-2%xf2~3*xe3*e1~3-2+f3xf1~3xe3*el~3
+f1~3%f3*%e2"2%el1"2+6%f2*f1%f3%e2"3+6%f2"3*xe3*e2%el-7T2*f3*f2xf1*e3*e2%el
+6*f3*f1~3*%e3*e2*%el+3*f224f1 " 2%e3%e2%el+f2~2%xf1"2%e2"3+f2"3*e2"24e1~2-2%f1~3%f3*%e2"3
+£2~4%e2~2-3*£3*%f2%f1"2*%e3%el~2+5+%f1~3%xf2xe3"2%e1+9*f3~2*%f1~24e2"2-27+f3"2%e3*%el1"~3
+2%£3°2%f2%e1~4) *X"~2
+(-54%f2~3%e3"3-54*£3"3%e2"3-3*f1~4*f2%e3"3-27*f3"2%e3*%e2"3+3*f1*¥f2"3*%e3"2*el1~2
-8#f173%f3%e2"3%e3+18*f1%f2"3%e3"2%e2-2+%f1"3+%f2"2%e3"2%e1~2-27*£3"3*f1*e2 " 2%el
-3*f2+f1%xf3%e2"4*%el-2%f2"4*e3%e2%el 2+18+£3~2%xf2xf1%e2~3+27*f2"2%f1"2*f3%e3"2
+18*%£2°3%e3"2%e2%el-2*f2"3%f1~2%e3%e2"2-54*£3~2*%f1~3%e3"2+27*£3"2*f1~2*e3%e2"2
-3%f2"4%f1%e3~2+27*£2~2+f1~2%e3~3-2%f1~3*%£3~2%e2"3+4*xf3*xf2~2%e2~4-2+f3%xf2"3%e2"3
-27x£2~3xf3%e372+33*f1~3%f3%e3"2*e2%el1-135*f3~2xf2xf1*e3*e2xel+18*f1~3xf2xf3*e3"2*el
-2%f273%e3"2%el1"3+6*f3*f2*xf1*e3*%e2"2%e1"2+33+£3 2% f2xf1*xel1"3*%e3-2*f2"5*e3*e2
+15%f1~3%f2*%e3"3*el-2*e3 " 24f1 " 34%f2%e2"2+6*f3"2*f1*e2"4-2*f3"34%f1%el1~5-3*%f3"3*el " 4*e2
-3*%f3"2%e2"4*el-27*f3*f1~2%xe3"3xel-f3*f2*f1~3%e2"3%el+3*f2"2*xf1*e3"2*%e2%el"2
-f1~3%f2%e3"2%e2*e1~2+9%e3~2+f2~2*xf1xe2~2+9*f3*%f1"2%e3"2%e2%e1~2-135*f3*f2*xf1*xe3~2*e2%el
+18*%£3~2*xf1*e3*el~3*e2-3*%f3~2*xf2*xf1*el~4*e2+15*f3*f2xf1~2kel*e3*%e2~2+33*f3*f2xf1%e2"3*e3
-27+£3%f2%e3"2%e2%el1~2-27*%£3"2*xf1"2*f24e3%e2-2+%f3*f1~2%xe2"3*el*e3-f1*%f2"24e2"3*el*e3
-27%£2~2%f1%e3"3%el+4*f2~4*e3%e2"2-2%f2"3%e2"3*%e3-27%f3"3%el1"3*e3+27*£3"3%el1"2%e2"2
-54x£3~2%xe3"2%xel1~3-f1"3%f2"2%e3*e2"2xel1+3*f3*f2"2%e2*e3%e1~3+3*f3*f2%f1~3%e3*e2"2
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-5*f1~3%f2"2%e3~2%e2+27+f3*xf2~2%xe3"2%xe1~2-8+f2~3*f3*e3*xel1~3-2%f2~2*f3*e2"3%el1~2
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-10*%£2724f1~2%f3%e2"3%e3+2*f2~4*f3*el " 24e2%e3+f3"24%f2"2%xf1"2%xe1"3*e3+2*f3*f2"3%el ~4*e2+4e3
-6*%£272%f1~3*f3%e3"~2%el1~2+27*f2~3*f1*%f3*xe3"2%e2+24f3*f1~4*e3"2%e2"2%el-b*f2"4*xf1*xe3~2*e2%el
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