CHAPITRE 18 : DERIVABILITE correction MPSI

EXERCICE 105

On sait que f est de classe €2 sur [a,a +2h], donc la fonction ¢, définie par ¢(x) = f(x+ h) — f(x) est de classe € sur
la,a+ hl.

Ona:¢(a)=fla+h) —fla)etpla+h)=f(a+2h)—f(a+h),

donc|g(a+h) - (@) = fla+2h) -2f(a+1) +f(@ |

D’autre part, pour tout x € [a,a+ h], ona: ’ o' x)=fx+h-f'(x

Donc d’apres le théoréeme des accroissements finis, il existe b €]a, a+ h[ tel que p(a+ h) —@(a) = h-¢'(b)
Mais alors | @(a+ h) —@(a) = h(f'(b+ h) - f'(D))
f’ estde classe ¢! sur [a,a+2h], donc elle est € en particulier sur [b, b + h].

Mais alors on peut appliquer le théoréme des accroissements finis a f’ sur [b, b+ h] :
il existe c €]b, b+ h[ (cla, a+2h][) tel que

f'h+m) -~ f'b)=h- ()

En utilisant les égalités encadrées on obtient :

fla+2h) =2f(a+h)+ f(a)=h>-f"(c)

EXERCICE 107

On considere la fonction g : R — R définie par g(x) = f(x) — f(—x).
g est dérivable sur R et g(0) = 0.
D’apres le théoréme des accroissements finis (sur [0, x]) il existe ¢ €]0, x[ tel que

gx)-g0=x-g'(c)

Mais pour tout x € R, ona g’'(x) = f'(x) + f'(—x), donc on en déduit :

fO-f0)=x(f'0+f(-0)

EXERCICE 108
¢ Premiére solution : avec des “pointillets” :
f continue sur [a, b], dérivable sur ]a, bl et f(a) = f(b) =0, donc (Rolle) 3c; €]a, b tel que f'(c;) =0

f’ continue sur [a, ¢1], dérivable sur ]a, ci[ et f'(a) = f'(c;) =0, donc (Rolle) 3c; €]a, c1[ tel que f”(c2) =0

f("_” continue sur [a, ¢;,—1], dérivable sur ]a, c,—1[ et f(”_”(a) = f(”_”(cn_l) = 0 donc (Rolle) 3¢, €la, c,-1[ tel que
f(n) (cn) =0.

¢ Deuxiéme solution : par récurrence sur 7 € N*

— Sin=1c’estle théoreme de Rolle.

- Supposons la propriété vraie pour un certain n € N. Montrons la pour n + 1 : on sait que f(a) = f'(a) =--- =
f"V(a) = 0 et f(b) = 0 donc par hypothése de récurrence, il existe cy €]a, b tel que " (cy) = 0. Mais on sait
aussi que f M (a) = 0 et comme f dérivable (n + 1) fois, alors f (") est continue sur [a, ¢] et dérivable sur ]a, ¢y,
donc par le théoréme de Rolle, 3c €]a, cy[c]a, b] tel que £+ (c) = 0.



EXERCICE 109
» Existence: Soit g: [0,1] — R définie par g(x) = f(x) —x. Alors g(0) =0 et g(1) < 0. Si g(0) =0 ou g(1) = 0 on a trouvé un
point fixe. Sinon g(0)g(1) < 0 et g continue (par somme de fonctions continues) donc on peut appliquer le théoréeme
des valeurs intermédiaires : Ac €]0, 1[ tel que g(c) = 0 mais alors f(c) = c.
* Unicité : Supposons par absurde qu'il existe deux nombres x; < x, dans [0, 1], telles que f(x1) = x; et f(x2) = Xp.

On a alors g(x;1) = g(x2) =0. g continue sur [x;, x»] et dérivable sur | x;, x»[ (par somme de fonctions dérivables), donc
par le théoreme de Rolle, il existe xo €]x;, x2[ tel que g'(x9) =0. Or g’'(x) = f'(x) —1 donc g'(x9) =0 < f'(xp) = 1.

Par croissance de f’ on sait donc que Vx € [xp,1], f/(x) = 1.

On applique ensuite le théoréeme des accroissements finis a la fonction f sur I'intervalle [xg, 1] (f continue sur [xg, 1],
fQ) - f(xo) = i) —xo. Mais f(1) < 1,donc f(1) —xp <1—xp

1-xp 1-xp
par conséquent f’(c) < 1 ce qui contredit le fait que f'(x) =1 Vx € [xg, 1]. Absurde. Donc x; = x;.

dérivable sur ] xg, 1[) : il existe ¢ €]x, 1[ tel que f'(c) =

EXERCICE 112

Soit 7€ N*.On a
(Ep) xy' —(n-2x%)y=n-2x

(Hy)  xy —(n-2x*)y=0.
1. Sur]0,+oo[ ou ] —o0,0[ 'équation (H},) est équivalente a :

—2x2
Hy -T2 x’”yzo.

Or sur |0, +oo[ ou | —oo,O[/(g—Zx) dx=nln|x]-x*+K,K €R.

Donc sur ]0, +oo[ la solution générale de (H),) est y; (x) = )Lle”lnx_xz = Alx”e_xz. M eR)
Et sur | — oo, 0[ la solution générale de (H),) est y»(x) = Aetnx-x* _ /1(—x)"e’x2 = M—l)"x”e’)62 = Agx”e’xz.
AeR, Ay =(-1)"A).
2. On cherche une solution particuliere constante de (Ej) (sur ]0, +oo[ ou ] — oo, 0[). On obtient
—(n —2x2)y =n-2x°

Donc y=-1.

Donc les solutions de (E;;) sur ]0, +oo[ ou | — oo, 0[ sont toutes de la forme

y(x) =-1 +Ax"e™, L eR.

3. Analyse: Si y est une solution de (E,,) de classe €' sur R, alors il existe (11, 12) € R? tel que

yx) = -1+ 1x"e™®  VYxel—o0,0]

x2

y(x)=-1+2Ax"e™ Vxe€]0,+ool.

Or lir{)l y(x) = li%l y(x) = -1, donc y(0) = —1 (pour que y soit continue en 0).
x—0t x—0~

D’autre part
o = M(nx" e ™ + x"(—2x)e™™ = A1 * (nx""L —2x"*1) pour x €] — 00,0[
y Aa e (nx" L —2x"h pour x €]0, +oo[
e Sin=1 111})1 y'(x) = A et linol ¥'(x) = A2 donc par continuité de y’ on obtient A; = 1.
x—0— x—0"

e Sin=2 lir(r)l y'(x) = lirgl y'(x) = 0 donc A, et A, quelconques.
x—0- x—0*



Synthese :

e sin=1onpose y(x)=-1+ Ax"e™*". On vérifie que y est bien de classe €' sur R (elle est de classe ™) et que y

est bien une solution de (E;) en0:

y(0) = —1et y'(0) = A, on remplace dans (E,) et on obtient0-y' — (1 —2- 0%)(-1)=1ce qui convient.
e sin#1,soit (1,1,) € R?, on pose
/hxne‘x2 six €] —o0,0[

yx)=4 -1 six=0
/12x”e‘x2 si x €]0, +ool.

On prouve que y est une solution de (E;) en 0 de la méme maniére que pour n = 1, on sait que y est continue (vu
dans I'analyse), il reste a prouver que les limites droite et gauche de y'(x) en 0 (déja calculées) coincident avec
y(h) - y(0) Ase M pn e

= lim ——— =lim Aye

=0 (car n > 1) et de méme a gauche, ce qui nous
h—o0* h h—0

¥'(0). Or hlin()l+
permet de conclure.

EXERCICE 116

On considere la fonction g définie sur [a, b] par g(x) = e* ( fo-f' (x)).
g est dérivable par somme et produit de fonctions dérivables, eton a:

vxelabl, [gW|=e"(f0)-f'()+e (f0- ") =] e (f0 - [").

On remarque que g satisfait les hypotheses du théoreme de Rolle (g continue sur [a, b], dérivable sur |a, b[ et g(a) = g(b)),
donc il existe ¢ €]a, b tel que g’(c) = 0 c’est-a-dire f”(c) = f(c).

EXERCICE 117

Soit x > 0. On applique le théoreme des accroissements finis a la fonction f =In sur [x, x+1] (f est bien continue sur [x, x+1]
et dérivable sur ] x, x + 1[).

fx+1)—-f(x)

x+1—x

On a donc : il existe ¢ €]x, x + 1[ tel que f'(x) = C’est-a-dire :

% =In(x+1)-In(x).

1 1
Or ce€lx,x+1[ donc < — < — donc on peut conclure
c X

1 1
——<In(x+1)-Inx) < —.
x+1 X
A partir de I'inégalité précédente on obtient aussi, si x > 1:
1
Inx+1)—-In(x) < — <In(x) —In(x-1)
X

en additinnant les inégalités on a :

kn kn 1 kn
Y (n(p+D-Inp)< ) —< ) (In(p-np-1).
p=n+1 p=n+1 p=n+1

Les deux sommes étant téléscopiques on obtient :

kn 1 kn+1 kn 1 k
Inlkn+1)—-1In(n+1) < Z —<In(kn)-1In(n) < ln( nt )< Z —<ln(—n).
p=n+l n+1 p=n+1P
. kn+1 kn s PN
On remarque que nhIP In 1) In - = In(k), donc d’apres le théoréme des gendarmes, on peut conclure que
—1+00

kn 1
lim ) —=In(k).

n—+oo p=n+1 p




