
CHAPITRE 18 : DÉRIVABILITÉ correction MPSI

EXERCICE 105

On sait que f est de classe C 2 sur [a, a + 2h], donc la fonction ϕ, définie par ϕ(x) = f (x +h)− f (x) est de classe C 2 sur
[a, a +h].
On a : ϕ(a) = f (a +h)− f (a) et ϕ(a +h) = f (a +2h)− f (a +h),
donc ϕ(a +h)−ϕ(a) = f (a +2h)−2 f (a +h)+ f (a)

D’autre part, pour tout x ∈ [a, a +h], on a : ϕ′(x) = f ′(x +h)− f ′(x)

Donc d’après le théorème des accroissements finis, il existe b ∈]a, a +h[ tel que ϕ(a +h)−ϕ(a) = h ·ϕ′(b)

Mais alors ϕ(a +h)−ϕ(a) = h
(

f ′(b +h)− f ′(b)
)

f ′ est de classe C 1 sur [a, a +2h], donc elle est C 1 en particulier sur [b,b +h].
Mais alors on peut appliquer le théorème des accroissements finis à f ′ sur [b,b +h] :
il existe c ∈]b,b +h[ (⊂]a, a +2h[) tel que

f ′(b +h)− f ′(b) = h · f ′′(c)

En utilisant les égalités encadrées on obtient :

f (a +2h)−2 f (a +h)+ f (a) = h2 · f ′′(c)

EXERCICE 107

On considère la fonction g :R→R définie par g (x) = f (x)− f (−x).
g est dérivable sur R et g (0) = 0.
D’après le théorème des accroissements finis (sur [0, x]) il existe c ∈]0, x[ tel que

g (x)− g (0) = x · g ′(c)

Mais pour tout x ∈R, on a g ′(x) = f ′(x)+ f ′(−x), donc on en déduit :

f (x)− f (−x) = x
(

f ′(c)+ f ′(−c)
)

EXERCICE 108

• Première solution : avec des “pointillets” :

f continue sur [a,b], dérivable sur ]a,b[ et f (a) = f (b) = 0, donc (Rolle) ∃c1 ∈]a,b[ tel que f ′(c1) = 0

f ′ continue sur [a,c1], dérivable sur ]a,c1[ et f ′(a) = f ′(c1) = 0, donc (Rolle) ∃c2 ∈]a,c1[ tel que f ′′(c2) = 0

...

f (n−1) continue sur [a,cn−1], dérivable sur ]a,cn−1[ et f (n−1)(a) = f (n−1)(cn−1) = 0 donc (Rolle) ∃cn ∈]a,cn−1[ tel que
f (n)(cn) = 0.

• Deuxième solution : par récurrence sur n ∈N∗

– Si n = 1 c’est le théorème de Rolle.

– Supposons la propriété vraie pour un certain n ∈ N. Montrons la pour n + 1 : on sait que f (a) = f ′(a) = ·· · =
f (n−1)(a) = 0 et f (b) = 0 donc par hypothèse de récurrence, il existe c0 ∈]a,b[ tel que f (n)(c0) = 0. Mais on sait
aussi que f (n)(a) = 0 et comme f dérivable (n +1) fois, alors f (n) est continue sur [a,c0] et dérivable sur ]a,c0[,
donc par le théorème de Rolle, ∃c ∈]a,c0[⊂]a,b[ tel que f (n+1)(c) = 0.



EXERCICE 109

• Existence : Soit g : [0,1] →R définie par g (x) = f (x)−x. Alors g (0) ≥ 0 et g (1) ≤ 0. Si g (0) = 0 ou g (1) = 0 on a trouvé un
point fixe. Sinon g (0)g (1) < 0 et g continue (par somme de fonctions continues) donc on peut appliquer le théorème
des valeurs intermédiaires : ∃c ∈]0,1[ tel que g (c) = 0 mais alors f (c) = c.

• Unicité : Supposons par absurde qu’il existe deux nombres x1 < x2 dans [0,1], telles que f (x1) = x1 et f (x2) = x2.

On a alors g (x1) = g (x2) = 0. g continue sur [x1, x2] et dérivable sur ]x1, x2[ (par somme de fonctions dérivables), donc
par le théorème de Rolle, il existe x0 ∈]x1, x2[ tel que g ′(x0) = 0. Or g ′(x) = f ′(x)−1 donc g ′(x0) = 0 ⇔ f ′(x0) = 1.

Par croissance de f ′ on sait donc que ∀x ∈ [x0,1], f ′(x) ≥ 1.

On applique ensuite le théorème des accroissements finis à la fonction f sur l’intervalle [x0,1] ( f continue sur [x0,1],

dérivable sur ]x0,1[) : il existe c ∈]x0,1[ tel que f ′(c) = f (1)− f (x0)

1−x0
= f (1)−x0

1−x0
. Mais f (1) < 1, donc f (1)− x0 < 1− x0

par conséquent f ′(c) < 1 ce qui contredit le fait que f ′(x) ≥ 1 ∀x ∈ [x0,1]. Absurde. Donc x1 = x2.

EXERCICE 112

Soit n ∈N∗. On a
(En) x y ′− (n −2x2)y = n −2x2

(Hn) x y ′− (n −2x2)y = 0.

1. Sur ]0,+∞[ ou ]−∞,0[ l’équation (Hn) est équivalente à :

(H ′
n) y ′− (n −2x2)

x
y = 0.

Or sur ]0,+∞[ ou ]−∞,0[
∫ (n

x
−2x

)
dx = n ln |x|−x2 +K ,K ∈R.

Donc sur ]0,+∞[ la solution générale de (H ′
n) est y1(x) =λ1en ln x−x2 =λ1xne−x2

. (λ1 ∈R)

Et sur ]−∞,0[ la solution générale de (H ′
n) est y2(x) =λen ln(−x)−x2 =λ(−x)ne−x2 =λ(−1)n xne−x2 =λ2xne−x2

.

(λ ∈R,λ2 = (−1)nλ).

2. On cherche une solution particulière constante de (En) (sur ]0,+∞[ ou ]−∞,0[). On obtient

−(n −2x2)y = n −2x2.

Donc y =−1.

Donc les solutions de (En) sur ]0,+∞[ ou ]−∞,0[ sont toutes de la forme

y(x) =−1+λxne−x2
, λ ∈R.

3. Analyse : Si y est une solution de (En) de classe C 1 sur R, alors il existe (λ1,λ2) ∈R2 tel que

y(x) =−1+λ1xne−x2 ∀x ∈]−∞,0[

y(x) =−1+λ2xne−x2 ∀x ∈]0,+∞[.

Or lim
x→0+ y(x) = lim

x→0− y(x) =−1, donc y(0) =−1 (pour que y soit continue en 0).

D’autre part

y ′(x) =
{
λ1(nxn−1e−x2 +xn(−2x)e−x2 =λ1e−x2

(nxn−1 −2xn+1) pour x ∈]−∞,0[

λ2e−x2
(nxn−1 −2xn+1) pour x ∈]0,+∞[

• Si n = 1 lim
x→0− y ′(x) =λ1 et lim

x→0+ y ′(x) =λ2 donc par continuité de y ′ on obtient λ1 =λ2.

• Si n = 2 lim
x→0− y ′(x) = lim

x→0+ y ′(x) = 0 donc λ1 et λ2 quelconques.



Synthèse :

• si n = 1 on pose y(x) =−1+λxne−x2
. On vérifie que y est bien de classe C 1 sur R (elle est de classe C ∞) et que y

est bien une solution de (En) en 0 :

y(0) =−1 et y ′(0) =λ, on remplace dans (En) et on obtient 0 · y ′− (1−2 ·02)(−1) = 1 ce qui convient.

• si n 6= 1, soit (λ1,λ2) ∈R2, on pose

y(x) =


λ1xne−x2

si x ∈]−∞,0[
−1 si x = 0

λ2xne−x2
si x ∈]0,+∞[.

On prouve que y est une solution de (En) en 0 de la même manière que pour n = 1, on sait que y est continue (vu
dans l’analyse), il reste à prouver que les limites droite et gauche de y ′(x) en 0 (déjà calculées) coïncident avec

y ′(0). Or lim
h→0+

y(h)− y(0)

h
= lim

h→0+
λ2e−h2

hn

h
= lim

h→0
λ2e−h2

hn−1 = 0 (car n > 1) et de même à gauche, ce qui nous

permet de conclure.

EXERCICE 116

On considère la fonction g définie sur [a,b] par g (x) = ex
(

f (x)− f ′(x)
)
.

g est dérivable par somme et produit de fonctions dérivables, et on a :

∀x ∈ [a,b], g ′(x) = ex (
f (x)− f ′(x)

)+ex (
f ′(x)− f ′′(x)

)= ex (
f (x)− f ′′(x)

)
.

On remarque que g satisfait les hypothèses du théorème de Rolle (g continue sur [a,b], dérivable sur ]a,b[ et g (a) = g (b)),
donc il existe c ∈]a,b[ tel que g ′(c) = 0 c’est-à-dire f ′′(c) = f (c).

EXERCICE 117

Soit x > 0. On applique le théorème des accroissements finis à la fonction f = ln sur [x, x+1] ( f est bien continue sur [x, x+1]
et dérivable sur ]x, x +1[).

On a donc : il existe c ∈]x, x +1[ tel que f ′(x) = f (x +1)− f (x)

x +1−x
c’est-à-dire :

1

c
= ln(x +1)− ln(x).

Or c ∈]x, x +1[ donc
1

x +1
< 1

c
< 1

x
donc on peut conclure

1

x +1
< ln(x +1)− ln(x) < 1

x
.

À partir de l’inégalité précédente on obtient aussi, si x > 1 :

ln(x +1)− ln(x) < 1

x
< ln(x)− ln(x −1)

en additinnant les inégalités on a :

kn∑
p=n+1

(
ln(p +1)− ln(p)

)< kn∑
p=n+1

1

p
<

kn∑
p=n+1

(
ln(p)− ln(p −1)

)
.

Les deux sommes étant téléscopiques on obtient :

ln(kn +1)− ln(n +1) <
kn∑

p=n+1

1

p
< ln(kn)− ln(n) ⇔ ln

(
kn +1

n +1

)
<

kn∑
p=n+1

1

p
< ln

(
kn

n

)
.

On remarque que lim
n→+∞ ln

(
kn +1

n +1

)
= ln

(
kn

n

)
= ln(k), donc d’après le théorème des gendarmes, on peut conclure que

lim
n→+∞

kn∑
p=n+1

1

p
= ln(k).


