CHAPITRE 12 : PRIMITIVES ET INTEGRALES MPSI

EXERCICE 64
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D’apres la regle de Chasles on peut écrire : f fde= [ f(ode +f fde
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On a deux cas possibles :
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Dans ce cas on obtient :
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Mais alors :
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etdonc:

1 b 1 [¢
TaL f(t)dtgm\/; f(t)dt

1 [ 1 (b

Ce deuxiéme cas est analogue est on obtiendra :
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On peut donc conclure que I'inégalité de I'énoncé est toujours vérifiée.

EXERCICE 68
1. Pour tout n € N, x — e~ g(x) est bien définie et continue sur [0,1] (par produit de fonctions continues), donc cette

fonction admet une primitive sur [0, 1].

1 1
2. (@ | :[ xe *dx=[-xe ¥ 1+f e ¥dx=—el4[-el=celoelyi=[1-2
sesar= [z} [ ! 2

(On a fait une IPP avec u(x) = x, v(x) = —e~* fonctions de classe C! sur [0, 1]).
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Or nhrP — =0, donc par le théoreme des gendarmes (encadrement), on a hm I, =0.
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