
CHAPITRE 11 : DÉRIVATION - CORRECTION MPSI

EXERCICE 58

On a

f (x) = (1+ex )n =
n∑

k=0

(
n
k

)
ekx .

f est de classe C∞ sur R par composition de fonctions de classe C∞ (x 7→ 1+ex et x 7→ xn).
On dérive deux fois les deux expressions de f :

f ′(x) = n(1+ex )n−1 ·ex =
n∑

k=0

(
n
k

)
kekx

puis

f ′′(x) = n(n −1)(1+ex )n−2 ·e2x +n(1+ex )n−1 ·ex

= nex (1+ex )n−2 (
(n −1)ex + (1+ex )

)
ou bien

f ′′(x) =
n∑

k=0

(
n
k

)
k2ekx

En évaluant ces deux epressions en 0 on obtient

f ′′(0) = 2n−2 ·n(n +1)

et

f ′′(0) =
n∑

k=0

(
n
k

)
k2.

On peut donc en déduire
n∑

k=0

(
n
k

)
k2 = 2n−2 ·n(n +1).

EXERCICE 59

1. ln(1+x) É x : montré en classe.

Montrons que, pour tout x Ê 0, x − 1
2 x2 É ln(1+x).

On considère la fonction f :R+ →R définie par :

f (x) = ln(1+x)−x + 1

2
x2.

On veut montrer que f est positive sur R+.

f est dérivable par somme et composition de fonctions dérivables.

Soit x ∈R+.

f ′(x) = 1

1+x
+x −1 = 1+x2 −1

1+x
= x2

1+x
.

On remarque que ∀x ∈ R+, f ′(x) > 0 et on en déduit que la fonction f est strictement croissante sur R+. De plus,
f (0) = 0. On a donc : ∀x ∈R+, f (x) Ê 0.

On peut donc conclure que ∀x ∈R+, x − 1
2 x2 É ln(1+x).



2. On remarque que
n∏

k=1

(
1+ k

n2

)
= exp

(
ln

(
n∏

k=1

(
1+ k

n2

)))
(tous les facteurs du produit sont strictement positifs, donc le ln est bien défini).

On s’intéresse donc à ln

(
n∏

k=1

(
1+ k

n2

))
.

On a (d’après les propriétés de ln) : ln

(
n∏

k=1

(
1+ k

n2

))
=

n∑
k=1

ln

(
1+ k

n2

)
.

Soit k ∈ �1,n�. Alors
k

n2 Ê 0 et donc, grâce à la question 1, on sait que
k

n2 − 1

2

(
k

n2

)2

É ln

(
1+ k

n2

)
É k

n2 .

En passant aux sommes on obtient :

n∑
k=1

k

n2 − 1

2

n∑
k=1

(
k

n2

)2

É
n∑

k=1
ln

(
1+ k

n2

)
É

n∑
k=1

k

n2 .

En développant les sommes de gauche et de droite :

n(n +1)

2n2 − n(n +1)(2n +1)

12n4 É
n∑

k=1
ln

(
1+ k

n2

)
É n(n +1)

2n2 .

On remarque que lim
n→+∞

n(n +1)

2n2 = 1

2
et lim

n→+∞
n(n +1)(2n +1)

12n4 = 0,

donc d’après le théorème des gendarmes on peut conclure que lim
n→+∞

n∑
k=1

ln

(
1+ k

n2

)
= 1

2
puis, en composant avec

l’exponentielle,

lim
n→+∞

n∏
k=1

(
1+ k

n2

)
= lim

n→+∞exp

(
n∑

k=1
ln

(
1+ k

n2

))
= e1/2 = p

e

EXERCICE 61

On va démontrer la formule par récurrence à deux crans.

• Initialisation :

– (n = 0) : f0 : x 7→ e1/x , f0 est dérivable par composition de fonctions dérivables (sur R∗+ et R)

et f ′
0(x) =− 1

x2 e1/x = (−1)0+1

x0+2 e1/x .

– (n = 1) : f1 : x 7→ xe1/x est dérivable (deux fois) sur R∗+ (par composition) et

f ′′
1 (x) =

(
e1/x −x

1

x2 e1/x
)′
=− 1

x2 e1/x + 1

x3 e1/x + 1

x2 e1/x = 1

x3 e1/x = (−1)1+1

x1+2 e1/x .

• Hérédité : Soit n ∈N∗ tel que la formule soit vraie pour n et pour (n −1).

On veut calculer f (n+2)
n+1 (avec fn+1(x) = xn+1e1/x = x fn(x)).

f (n+2)
n+1 (x) = (

(x fn(x))′
)(n+1) = (

fn(x)+x f ′
n(x)

)(n+1) = f (n+1)
n (x)+

(
x

(
nxn−1e1/x +xn

(
− 1

x2

)
e1/x

))(n+1)

= f (n+1)
n (x)+ (

nxne1/x
)(n+1) − (

xn−1e1/x
)(n+1) = f (n+1)

n (x)+n f (n+1)
n (x)−

(
f (n)

n−1(x)
)′

(on reconnaît fn−1(x) et fn(x))

= (n +1) f (n+1)
n (x)−

(
(−1)n

xn+1 e1/x
)′

par hypothèse de récurrence sur f (n)
n−1(x).

= (n +1) f (n+1)
n (x)+ (−1)n−1 (−n −1)

xn+2 e1/x − (−1)n

xn+1

(
− 1

x2

)
e1/x (on a dérivé la partie entre parenthèses)



= (n +1) f (n+1)
n (x)− (n +1) f (n+1)

n (x)+ (−1)n+2

xn+3 e1/x par hypothèse de récurrence sur f (n+1)
n (x).

= (−1)n+2

xn+3 e1/x ce qui prouve la formule pour f (n+2)
n+1 .


