
CHAPITRE 1 : ENSEMBLES, LOGIQUE, MÉTHODES DE RAISONNEMENT correction MPSI

EXERCICE 5

On fait une récurrence sur n ∈N∗.

• Initialisation : pour n = 1 on obtient l’inégalité 1 < 2 qui est toujours vraie.
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On a donc prouvé l’hérédité.

• Conclusion : la propriété étant initialisée et héréditaire, on en déduit, d’après le principe de récurrence, que la pro-
priété est vraie pour tout n ∈N∗.

EXERCICE 7

On fait une récurrence (double) sur n ∈N.

• Initialisation : pour n = 0 on a : u0 = 3 et 20+1 +1 = 3 donc l’égalité est vraie.

Pour n = 1 on a u1 = 5 et 22 +1 = 5 donc l’égalité est vraie.

• Hérédité : Soit n ∈N tel que un = 2n+1 +1 et un+1 = 2n+2 +1.

(On veut montrer que un+2 = 2n+3 +1)

Or : un+2 = 3un+1 −2un = 3
(
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)= 3 ·2n+2 +3−2n+2 −2 = 2 ·2n+2 +1 = 2n+3 +1.

L’hérédité est prouvée.

• Conclusion : la propriété étant initialisée et héréditaire, on peut conclure, d’après le principe de récurrence (à deux
crans), que la propriété est vraie pour tout n ∈N.

EXERCICE 10

Soient x1, x2, . . . , xn des réels positifs. On veut montrer que si x1 +x2 +·· ·+xn = 0 alors chacun des xi est nul.
On fait un raisonnement par l’absurde : supposons que l’un des xi , par exemple x1 est non nul (aucune perte de généralité).
On a alors x1 > 0. Mais alors x1+·· ·+xn > 0 (on a ajouté des quantités positives). Ce qui contredit x1+·· ·+xn = 0. ABSURDE.
On conclut que tous les xi sont nuls.
(Autre méthode : on suppose x1 > 0 et x1 +·· ·+ xn = 0, on obtient x1 =−(x2 +·· ·+ xn) le terme de gauche étant > 0 et le terme
de droite étant É 0 absurde !)



EXERCICE 11

1. On remplace x = 0 dans l’équation donnée : on obtient f (0) = 1 .

Puis, on remplace x = 1 : f (1)+ f (0) = 2 donc f (1) = 1 .

2. On obtient f (1−x)+ (1−x) f (x) = 2−x.

On a donc {
f (x) + x f (1−x) = 1+x

f (1−x) + (1−x) f (x) = 2−x

Si on suppose x 6= 0 (on connaît déjà f (0), on peut multiplier la 2ème ligne du système par x :{
f (x) + x f (1−x) = 1+x

x f (1−x) + x(1−x) f (x) = 2x −x2

puis on remplace L2 par L2 −L1 : {
f (x) + x f (1−x) = 1+x

(−x2 +x −1) f (x) = −x2 +x −1

On vérifie que le discriminant de l’équation −x2+x−1 = 0 est strictement négatif donc cette équation ne possède pas
de solutions réelle.

On peut donc diviser par (−x2 +x −1) (qui est non nul) la deuxième ligne et on obtient f (x) = 1.

On a donc montré que si f satisfait l’équation demandée, alors ∀x ∈R, f (x) = 1.

3. D’autre part, si la fonction f :R→R est définie par f (x) = 1, on vérifie facilement que l’équation est satisfaite.

On peut donc conclure que l’unique solution de l’équation fonctionnelle donnée est la fonction constante égale à 1.


