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(4h00, calculatrices interdites)

EXERCICE 1
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EXERCICE 2

1. Soient (x, y) ∈ J 2 et λ ∈ [0,1]. On veut montrer que

f ◦ g
(
λx + (1−λ)y

)Éλ f ◦ g (x)+ (1−λ) f ◦ g (y)

g étant convexe on a :
g
(
λx + (1−λ)y

)Éλg (x)+ (1−λ)g (y)

On applique la fonction f (qu’on sait être croissante sur I ) aux deux côtés de l’inégalité :

f
(
g
(
λx + (1−λ)y

))É f
(
λg (x)+ (1−λ)g (y)

)
mais f est convexe donc on a :

f
(
λg (x)+ (1−λ)g (y)

)Éλ f
(
g (x)

)+ (1−λ) f
(
g (x)

)
on peut donc conclure (par transitivité de l’inégalité) :

f
(
g
(
λx + (1−λ)y

))Éλ f
(
g (x)

)+ (1−λ) f
(
g (x)

)
ce qui prouve la convexité de f ◦ g sur J .

2. xx = exp
(

ln(xx)
)= exp(x ln x)

h est donc continue sur ]0,1] par produit et composition de fonctions continues sur ]0,1]. Il reste à montrer
la continuité en 0.

On sait que lim
x→0

x ln x = 0 par croissances comparées. On compose avec la fonction exponentielle (qui est

continue et on obtient) lim
x→0+

exp(x ln x) = 1 = h(0) ce qui prouve la continuité en 0.

3. Montrons que la fonction h de la question précédente est convexe : exp est convexe et croissante. D’après
la question 1 il suffit donc de montrer que x 7→ x ln(x) est convexe sur ]0,1] pour obtenir la convexité de leur
composition sur ]0,1].

x 7→ x ln x est de classe C ∞ sur ]0,1] (par produit de fonctions C ∞) donc on peut la dériver deux fois : pour
tout x ∈]0,1] on a :

f ′(x) = ln x +1 f ′′(x) = 1

x
> 0

On en déduit que x 7→ x ln x est convexe sur ]0,1] et donc h convexe sur ]0,1].

On peut aussi affirmer que h est convexe sur [0,1] (on vérifie l’inégalité de convexité avec x = 0 et y ∈]0,1]
et elle est trivialement vraie).

On sait alors que, d’après l’inégalité de convexité généralisée : pour tous λ1, . . . ,λn ∈ [0,1] tels que λ1 +·· ·+
λn = 1 et pour tous x1, . . . , xn ∈ [0,1] on a :

h (λ1x1 +·· ·+λn xn) Éλ1h(x1)+·· ·+λnh(xn)

On prend les λi = 1

n
et on obtient :

h
(x1 +·· ·+xn

n

)
É h(x1)+·· ·+h(xn)

n

c’est-à-dire : (x1 +x2 +·· ·+xn

n

) x1+x2+···+xn
n É xx1

1 +xx2
2 +·· ·+xxn

n

n

(avec l’abus de notation « 00 = 1 » comme à la question 2 pour le cas où tous les xi devaient être nuls...)
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PROBLÈME 1

Partie I

1. Si p = 1, alors A =
1 0 0

0 1 0
0 0 1

= I , donc ∀n ∈N, An = I .

Si p = 0, alors A0 = I , A =
0 0 0

1 0 0
0 1 1

, et on calcule ∀k Ê 2, Ak =
0 0 0

0 0 0
1 1 1


2. On calcule

A2 =
 p2 0 0

2p(1−p) p2 0
(1−p)2 (1+p)(1−p) 1

=
 p2 0 0

2p(1−p) p2 0
(1−p)2 1−p2 1


A3 =

 p3 0 0
3p2(1−p) p3 0

(1+2p)(1−p)2 (1−p)(1+p +p2) 1

=
 p3 0 0

3p2(1−p) p3 0
(1+2p)(1−p)2 1−p3 1


3. Par récurrence :

• Si n = 0, A0 = I et p0 = 1 donc en prenant a0 = b0 = c0 = 0, on obtient bien la formule voulue.

• Soit n ∈N tel que An =
pn 0 0

an pn 0
bn cn 1

.

On calcule An+1 = An · A =
 pn+1 0 0

an p + (1−p)pn pn+1 0
bn p + cn(1−p) cn p +1−p 1


on voit bien que An+1 est de la forme

pn+1 0 0
an+1 pn+1 0
bn+1 cn+1 1

 avec

an+1 = an p + (1−p)pn bn+1 = bn p + cn(1−p) cn+1 = cn p +1−p

4. (cn) est une suite arithmético-géométrique définie par :

c0 = 0 et ∀n ∈N, cn+1 = p · cn + (1−p)

On cherche α tel que (1−p)α= (1−p) on trouve α= 1.

On a (cn+1 −1) = p(cn −1) et donc cn = 1+pn(c0 −1) d’où pour tout n ∈N, cn = 1−pn

5. On sait que pour tout n ∈N, an+1 = an p + (1−p)pn . Un changement d’indice donne donc : an+2 = an+1 ·p +
(1−p)pn+1.

Mais alors

an+2 −2pan+1 +p2an = an+1p + (1−p)pn+1 −2pan+1 +p2an

=−pan+1 + (1−p)pn+1 +p2an

=−p
(
an p + (1−p)pn)+ (1−p)pn+1 +p2an

=−p2an − (1−p)pn+1 + (1−p)pn+1 +p2an

= 0
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On en déduit que (an) est une suite définie par une récurrence linéaire d’ordre deux.

Son équation caractéristique est x2 −2px +p2 = 0.

Cette équation a discriminant nul, donc possède une unique solution : x0 = p.

On en déduit que la suite (an) est de la forme an = pn(λ+µn). Il reste à déterminer les deux constantes
réelles λ et µ.

Or a0 = 0 implique p0(λ+µ ·0) = 0 et donc λ= 0.

Ensuite a1 = 1−p, donc p(λ+µ) = 1−p et ensuite µ= 1−p

p

On peut donc conclure que pour tout n ∈N

an = pn
(
n · 1−p

p

)
= n ·pn−1(1−p)

6. (a) Soit M =
a b c

d e f
g h i

 une matrice quelconque dans M3(R). LM = (
a +d + g b +e +h c + f + i

)
, donc

on voit que pour que M appartienne à E il faut que la somme des coefficients de chacune de ses co-
lonnes soit égale à 1.

(b) On voit facilement que A ∈ E . Mais alors L A = L et donc en multipliant à droite par A : L A2 = L A
c’est-à-dire L A2 = L et ainsi de suite, par récurrence immédiate, ∀n ∈N, L An = L et donc An ∈ E .

(c) En particulier, la somme des coefficients de la première colonne de An est égale à 1, donc, pour tout

n ∈N, pn +an +bn = 1 et donc bn = 1−an −pn
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Partie II

1. On voit immédiatement que B +C = A (matrice de la partie I)

2. C 2 = 0 (matrice nulle)

3. On calcule l’inverse : 1 1 0| 1 0 0
0 −1 0| 0 1 0
−1 0 1| 0 0 1

 1 1 0| 1 0 0
0 −1 0| 0 1 0
0 1 1| 1 0 1

 (L3 ← L3 +L1)

1 1 0| 1 0 0
0 −1 0| 0 1 0
0 0 1| 1 1 1

 (L3 ← L3 +L2)

1 1 0| 1 0 0
0 1 0| 0 −1 0
0 0 1| 1 1 1

 (L2 ←−L2)

1 0 0| 1 1 0
0 1 0| 0 −1 0
0 0 1| 1 1 1

 (L1 ← L1 −L2) (Dès que la matrice de gauche devient triangulaire supérieure, on voit

bien que ses coefficients diagonaux sont tous non nuls et donc P est bien inversible).

On obtient P−1 =
1 1 0

0 −1 0
1 1 1



4. P−1B =
p p 0

0 −p 0
1 1 1

 et D = P−1BP =
p 0 0

0 p 0
0 0 1


On en déduit immédiatement que pour tout k ∈N : Dk =

pk 0 0
0 pk 0
0 0 1



5. On a B = PDP−1 donc (récurrence immédiate) : ∀k ∈N : B k = PDk P−1 =
 pk 0 0

0 pk 0
1−pk 1−pk 1


6. On a An = (B +C )n . On vérifie par le calcul que BC =C B donc on peut appliquer la formule du binôme de

Newton :

An =
n∑

k=0

(
n
k

)
B n−kC k

mais on sait que pour k Ê 2 on a C k = 0 Donc on obtient

An = B n +nB n−1C =
 pn 0 0

0 pn 0
1−pn 1−pn 1

+n

 pn−1 0 0
0 pn−1 0

1−pn−1 1−pn−1 1

 0 0 0
1−p 0 0
p −1 0 0


Et donc on obtient

An =
 pn 0 0

npn−1 −npn pn 0
1−pn −npn−1 +npn 1−pn 1


cela corréspond à la matrice An trouvée à la partie I.
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PROBLÈME 2

Partie I

1. On sait qu’une fonction z :R→C est dérivable si, et seulement si, sa partie réelle et sa partie imaginaire sont
dérivables. Or, x et y sont dérivables d’après l’énoncé.

2. On a, pour tout t ∈R :

z ′(t ) = x ′(t )+ i y ′(t )

= x(t )− y(t )+e t cos(t )+ i
(
x(t )+ y(t )+e t sin(t )

)
= (1+ i )x(t )+ (i −1)y(t )+e t ·e i t

et

αz(t )+eαt = (1+ i )z(t )+e(1+i )t

= z(t )+ i z(t )+e t ·e i t

= x(t )+ i y(t )+ i x(t )− y(t )+e t ·e i t

= (1+ i )x(t )+ (i −1)y(t )+e t ·e i t

ce qui prouve l’égalité voulue.

3. (a) On considère d’abord l’équation homogène associée :

z ′− (1+ i )z = 0 (EH )

Les solutions sont les fonctions de la forme : zh(t ) =λe(1+i )t , avec λ ∈C.

On cherche une solution particulière de l’équation non homogène avec la méthode de la variation de
la constante :

on pose : zp (t ) =λ(t )e(1+i )t . On dérive on obtient : z ′
p (t ) =λ′(t )e(1+i )t +λ(t ) · (1+ i )e(1+i )t .

On remplace dans l’équation non homogène :

λ′(t )eαt +λ(t )αeαt −αλ(t )eαt = eαt .

On obtient λ′(t ) = 1.

On peut donc prendre λ(t ) = t et on obtient zp (t ) = te(1+i )t .

On peut conclure que les solutions de l’équations non homogène sont les fonctions de la forme :

z(t ) =λe(1+i )t + te(1+i )t , (λ ∈C).

(b) On a :

x(t ) = Re
(
z(t )

)
= Re

(
(λ1 + iλ2)e t (cos(t )+ i sin(t ))+ te t (cos(t )+ i sin(t ))

)
= λ1e t cos(t )−λ2e t sin(t )+ te t cos(t ).

(avec (λ1,λ2) ∈R2.)

y(t ) = Im
(
z(t )

)
= λ1e t sin(t )+λ2e t cos(t )+ te t sin(t ).
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4. On sait que x et y sont dérivables en tant que solutions d’une équation différentielle linéaire d’ordre 1.

Or ∀t ∈R, x ′(t ) = x(t )−y(t )+e t cos(t ) donc x ′ est dérivable par sommes et produits de fonctions dérivables.
De manière analogue, on prouve que y ′ est dérivable.

Donc x et y sont deux fois dérivables.

5.

(S) ⇔
{

x(t ) = y ′(t )− y(t )−e t sin(t )

y ′′(t )− y ′(t )−e t sin(t )−e t cos(t ) = y ′(t )− y −e t sin(t )− y(t )+e t cos(t )

⇔
{

x(t ) = y ′(t )− y(t )−e t sin(t )

y ′′(t )−2y ′(t )+2y(t ) = 2e t cos(t )

6. On résout l’équation caractéristique de (E) :

x2 −2x +2 = 0.

On trouve ∆=−4 donc les solutions complexes de cette équation sont : 1+ i et 1− i .

On en déduit que la solution générale (réelle) de l’équation homogène est de la forme :

yh(t ) = e t (
λcos(t )+µsin(t )

)
(λ,µ) ∈R2.

7. (a) yp est deux fois dérivable par produit de fonctions deux fois dérivables.

Pour tout t ∈R :
y ′

p (t ) = e t t sin(t )+e t (sin(t )+ t cos(t )).

y ′′
p (t ) = ·· · = e t (2sin(t )+2t cos(t )+2cos(t )) .

En remplaçant dans (E) on obtient bien y ′′
P (t )− 2y ′

P (t )+ 2yP (t ) = 2e t cos(t ) donc yp est une solution
particulière de (E).

(b) On en déduit que les solutions de (E) sont les fonctions y de la forme :

y(t ) = e t (λcos(t )+µsin(t )
)+ te t sin(t ) (λ,µ) ∈R2.

(on retrouve les solutions y trouvées à la question 3)

(c) Pour tout t ∈R, on calcule x(t ) :

x(t ) = y ′(t )− y(t )−e t sin(t )

=λe t cos(t )−λe t sin(t )+µe t sin(t )+µe t cos(t )+ te t sin(t )+e t (sin(t )+ t cos(t ))−λe t cos(t )−µe t sin(t )− te t sin(t )−e t sin(t )

=−λe t sin(t )+µe t cos(t )+e t (sin(t )+ t cos(t ))−e t sin(t )

= µe t cos(t )−λe t sin(t )+ te t cos(t )

(on retrouve les solutions x trouvées à la question 3)
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Partie II

8. D =C\ {2i }.

9. (a) Soit z = a + i b ∈C tel que z2 = 8−6i . On obtient le système{
a2 −b2 = 8
2ab =−6

⇔
{

a = 3
b =−1

ou

{
a =−3
b = 1

.

Donc les racines carrées de 8−6i sont 3− i et −3+ i .

(b)
z2

z −2i
= 1+ i ⇔ z2 = (1+ i )(z −2i ) ⇔ z2 − (1+ i )z + (2i −2) = 0. Le discriminant de cette équation de

second degré est∆= (1+i )2−4(2i −2) = 8−6i dont on connaît déjà les racines carrées. On trouve donc
les solutions de l’équation :

z1,2 = (1+ i )± (3− i )

2
.

Donc z1 = 2 et z2 = i −1 sont les antécedents de 1+ i par f .

10.
z2

z −2i
= h ⇔ z2 − zh +2i h = 0(E). On calcule le discriminant ∆= h2 −8i h. On sait que si ∆= 0

(i.e. h = 0 ou h = 8i ) l’équation (E) a une unique solution alors que si∆ 6= 0 (i.e. h ∈C\{0,8i }) alors l’équation
(E) a deux solutions distinctes. De plus, on vérifie aisement que 2i (la valeur interdite de f ) n’est jamais
solution.

Donc 0 et 8i possèdent un unique antécedent par f alors que tous les autres complexes en possèdent deux.

11. On a vu que tout nombre complexe admet au moins un antécedent par f , donc f est bien surjective.

12. f n’est pas injective car il existe des complexes ayant deux antécedents distincts.
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