MPSI - Devoir surveillé de Mathématiques n°5 - 18/01/2025
(4h00, calculatrices interdites)

EXERCICE 1
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def somme(n):
s=08
for j in range(2,n+1):
for i in range(1,3j):
s=5+i/j
return(s)



EXERCICE 2

1. Soient (x,y) € J? et A € [0,1]. On veut montrer que

fog(Ax+(1-Ny)<Afogx)+(1-A)fogy)

g étant convexeona:
gAx+(1-Dy)<Ag0)+A-1gy)

On applique la fonction f (qu’on sait étre croissante sur I) aux deux cotés de 'inégalité :

FlgAx+A-1)y)) < f(Agx) +1-1)g»)

mais f est convexe doncona:

FAg+1-1g) <Af(8@))+A-Af(gw)

on peut donc conclure (par transitivité de I'inégalité) :

Flg(Ax+A-1y)) <Af(g)+A-A)f(gx)
ce qui prouve la convexité de f o g sur J.

2. x* =exp(In(x")) = exp(xIn x)

h est donc continue sur ]0, 1] par produit et composition de fonctions continues sur ]0, 1]. Il reste a montrer
la continuité en 0.

On sait que lirr(l)xlnx = 0 par croissances comparées. On compose avec la fonction exponentielle (qui est
X—

continue et on obtient) lir{)l+ exp(xInx) =1 = h(0) ce qui prouve la continuité en 0.
X—

3. Montrons que la fonction & de la question précédente est convexe : exp est convexe et croissante. D’apres
la question 1 il suffit donc de montrer que x — xIn(x) est convexe sur ]0, 1] pour obtenir la convexité de leur
composition sur ]0, 1].

x — xInx est de classe € sur ]0, 1] (par produit de fonctions ¥*°) donc on peut la dériver deux fois : pour
tout x€]0,1]ona:

flx)=Inx+1 f"(x)= i >0

On en déduit que x — xIn x est convexe sur ]0, 1] et donc & convexe sur ]0, 1].

On peut aussi affirmer que & est convexe sur [0, 1] (on vérifie I'inégalité de convexité avec x =0 et y €]0,1]
et elle est trivialement vraie).

On sait alors que, d’apres I'inégalité de convexité généralisée : pour tous 14,...,1, €[0,1] telsque Ay +--- +
An =1etpour tous xi,...,x, €[0,1] ona:

hA1x1+--+Auxn) < Ath(x) +---+ A, h(xy,)

1
Onprendles A; = - et on obtient :

h(x1+---+xn)< h(xy) +---+ h(xy,)
n h n

c’est-a-dire :

X1 +Xp++Xp

X X X,
(x1+x2+---+xn)T _ XX+ Xy

S5

n n

(avec I'abus de notation «0° = 1» comme i la question 2 pour le cas ot tous les x; devaient étre nuls...)



PROBLEME 1
Partie I

=J],doncVneN, A"=1.

o = O

1 0
1. Sip=1,alors A=|0 0
0 1

SN——

—— o

00 0 0O
Sip=0,alors A°=1, A= 0 0|, etoncalculeVk=2, Ak=[(0 0 0
1 1 1 1 1

(=)

2. On calcule

p? 0 0 p? 0 0

A% = (ZP(l -p) p? 0) = (219(1 -p) P 0)

1-p? A+pa-p 1 1-p? 1-p% 1
p? 0 0 p’ 0 0
A3:( 3p?(1-p) p3 0):( 3p?(1-p) p3 0)
1+2p)(1-p)® A-pA+p+p>) 1 (1+2p)(1-p)* 1-p° 1

3. Par récurrence :

e Sin=0, A =Tet p° =1 donc en prenant ay = by = co = 0, on obtient bien la formule voulue.

p" 0 0
e SoitneNtelque A"=|a, p" 0f.
b, ¢, 1

pn+l 0 0
On calcule A"l = A". A = (anp+ (1-p)p" p+l 0)
bp,p+cpn(1—p) cpp+l-p 1

n+l

p 0 O
on voit bien que A1 est de la forme (an+1 p”+1 0) avec
bpv1 cpr1 1

aps1=app+1=p)p"  bpr1=bpp+cp(l-p)  cpr1=cpp+l-p
4. (cp) est une suite arithmético-géométrique définie par :
cp=0 et VneN, cpr1=p-cp+(1-p)

On cherche a tel que (1 - p)a = (1 - p) on trouve a = 1.

Ona(cye1—1)=p(cy,—1) etdonc ¢, =1+ p"(cop—1) dott pour tout neN, | c, =1—p"

5. On sait que pour tout n €N, a,+1 = ap+ (1—p)p”. Un changement d'indice donne donc: a2 = an+1-p+

(1—P)Pn+1-
Mais alors
Ans2 —2Paps1 + pPan = anrip+ A —p)p™ = 2pay. + p*ay,
=—-pap+(1- P)PnH + Pzdn
=—planp+A-p)p")+A-pp" ' +p*ay,
:_pZan_(l_p)pn+l+(1_p)pn+1+p2an
=0



On en déduit que (a;) est une suite définie par une récurrence linéaire d’ordre deux.
Son équation caractéristique est x> —2px + p? = 0.
Cette équation a discriminant nul, donc possede une unique solution : xy = p.

On en déduit que la suite (a;) est de la forme a, = p"(A + un). Il reste a déterminer les deux constantes
réelles A et u.

Or ap = 0 implique p°®(A+ w-0) =0 et donc A = 0.

1-
Ensuite @) =1 - p, donc p(A + ) =1— p et ensuite u = -°p
p

On peut donc conclure que pour tout n €N

1-
=p”(n-—”)= n-p"'a-p)

p
a b c
(@) Soit M=|d e f|unematrice quelconque dans.#3[R). LM =(a+d+g b+e+h c+ f+i),donc
g h i

on voit que pour que M appartienne a E il faut que la somme des coefficients de chacune de ses co-
lonnes soit égale a 1.

(b) On voit facilement que A € E. Mais alors LA = L et donc en multipliant & droite par A : LA> = LA
c’est-a-dire LA? = L et ainsi de suite, par récurrence immédiate, Vn e N, LA" = L et donc A" € E.

(c) En particulier, la somme des coefficients de la premiere colonne de A" est égale a 1, donc, pour tout
neN, p"+a,+b,=1etdonc|b,=1-a,—p"




Partie I1

1. On voit immédiatement que B + C = A (matrice de la partie I)
2. C? =0 (matrice nulle)

3. On calcule I'inverse :
1 1 0 1 00 1 1 1 00
0 -1 0 010 0 -1 0] 0 1 0|(Lg—L3g+Ly)
-1 0 1] 0 0 1 OllIlOl)
0
0
1

1 1 0 1 0O 1 1 | 1 0 O

0 -1 0] 0 1 0|(Lz<—Lsz+Ly) 01 0] 0 -1 0](Lp——-Ly)

0O 0 1] 1 1 1 00 1] 1 1 1

1 00 1 1 0

0 1 0] 0 -1 0] (L; < Ly—Ly) (Dés que la matrice de gauche devient triangulaire supérieure, on voit
0 0 1] 1 1 1

bien que ses coefficients diagonaux sont tous non nuls et donc P est bien inversible).

1 1 0
Onobtient P~'=[0 -1 0
1 1 1
p p O p 00
4. P'1B=|0 -p O|etD=P7'BP=|0 p 0
1 1 1 0 01
p¥ 0 o0
On en déduit immédiatement que pour tout ke N: DF =| 0 p* 0
0 0 1
p* 0 0
5. Ona B =PDP~! donc (récurrence immédiate) : Vke N: B* = PDkp~1=[ 0 p* 0
1-p* 1-pFk 1

6. Ona A" = (B+ C)". On vérifie par le calcul que BC = CB donc on peut appliquer la formule du bino6me de
Newton :

B k

k=0

mais on sait que pour k =2 on a C¥= 0 Donc on obtient

p" 0 0 p"t 0 0\f 0 0 0
A"=B"+nB"'C=| 0 p" Oo|l+n|[ O p™ ' ofl1-p 0 0
1-p" 1-p" 1 1-p 1-p™ 1t 1J\p-1 0 0
Et donc on obtient
p" 0 0
Al = npn—l_npn pn 0

1-p*—np™l+np" 1-p" 1

cela corréspond a la matrice A" trouvée a la partie I.



PROBLEME 2

Partie I

1. Onsait qu’'une fonction z: R — C est dérivable si, et seulement si, sa partie réelle et sa partie imaginaire sont
dérivables. Or, x et y sont dérivables d’apres I’énoncé.

2. Ona, pourtout reR:

et

Zm=x'+iy (1)
= x(t) — y(1) + e’ cos(t) + i(x(2) + y(1) + e’ sin(1))
=1+Dx(O+E-Dy®) +e' e

az(t) +e* = (1 +i)z(r) + 1!

:z(t)+iz(t)+et~eit
=x(O)+iy(O+ix(t)—y() +e’ el
=1+D)x(O+(E-Dy®) +e' e

ce qui prouve I’égalité voulue.

3. (a

(b)

On considere d’abord I'’équation homogene associée :
Z—(1+i)z=0 (Ep)

Les solutions sont les fonctions de la forme : z;, () = L e1*?¢ avec A € C.

On cherche une solution particuliere de I’équation non homogene avec la méthode de la variation de
la constante :

on pose : z,(£) = A(1)e!'*P*. On dérive on obtient : z),(1) = A'(1)e" V" + A(1) - (1 + i) el *7)".
On remplace dans I’équation non homogene :

A (Be* + A ae® —al(t)e*' = e*!.

On obtient A/ (1) = 1.
On peut donc prendre A(f) = ¢ et on obtient z, (1) = re1*97,
On peut conclure que les solutions de I'équations non homogene sont les fonctions de la forme :

z(8) = 21DV 4 1D () € ).

Ona:

x(1) =Re(z(1))
=Re((A; +idz)e (cos(r) + isin(1)) + te' (cos(t) + isin(1)))

=| 1 e’ cos(t) — e’ sin(z) + te! cos(t).

(avec (11, A2) € R?.)

y() =Im(z(1))

=| A1e’sin(f) + A,e’ cos(t) + te' sin(r).




4. On sait que x et y sont dérivables en tant que solutions d'une équation différentielle linéaire d’ordre 1.

OrVteR, x'(t) = x(t) - y(t) + e’ cos(t) donc x’ est dérivable par sommes et produits de fonctions dérivables.
De maniere analogue, on prouve que )’ est dérivable.

Donc x et y sont deux fois dérivables.

s x(t) =y () — y(r) — e’ sin(r)
N
') -y (1) — esin(t) — e’ cos(t) = y' (1) — y — e’ sin(1) — y(¢) + e’ cos(1)

x() = y' (1) — y(r) — e’ sin(r)
<>
y'(t) =2y () + 2y(1) = 2e’ cos(t)

6. On résout I’équation caractéristique de (E) :
2 —
x“—=2x+2=0.

On trouve A = —4 donc les solutions complexes de cette équation sont:1+iet1—i.

On en déduit que la solution générale (réelle) de I’équation homogene est de la forme :

yn(t) = e (Acos(8) + usin(8)) (A, w) € R?

7. (a) yp estdeux fois dérivable par produit de fonctions deux fois dérivables.

Pour tout te€R:
yp(8) = e'tsin(r) + e’ (sin(t) + tcos(1)).

Yp(8) =--- = e’ (2sin(#) + 2t cos(t) + 2 cos(1)).

En remplacant dans (E) on obtient bien y}(¢) — 2y, (1) + 2yp(t) = 2e’ cos(t) donc y, est une solution
particuliere de (E).

(b) On en déduit que les solutions de (E) sont les fonctions y de la forme :
y(t) = e'(Acos(t) + usin(p)) + te'sin(z) (A, p) € R

(on retrouve les solutions y trouvées a la question 3)

(c) Pour tout ¢ € R, on calcule x(1) :

x(1) = y'() — y(t) — e'sin(r)
= Ae’cos(t) — Ae’sin(t) + pe'sin(z) + pe’ cos(t) + te' sin(t) + e’ (sin(t) + tcos(r)) — Ae’ cos(t) — e’ sin(z) -

—Ae'sin(r) + pe’ cos(t) + e’ (sin(t) + tcos(t)) — e’ sin(#)

=| e’ cos(t) — Ae'sin(t) + te’ cos(t)

(on retrouve les solutions x trouvées a la question 3)



Partie I1

8. D=C\{2i}.

9. (a) Soitz=a+ibeCtelque z2 =8—6i. On obtient le systeme

a’-b*>=8 - a=3 a=-3
2ab=—6 oY p=1 -

Donc les racines carrées de 8 —6i sont3—i et -3+ i.

Z2

(b) > =1+i © Z2=(1+i)(z-2i) © z°—(1+1i)z+ (2i —2) = 0. Le discriminant de cette équation de
z—2i
second degré est A = (1+ i)2—4(2i —2) = 8—6i dont on connait déja les racines carrées. On trouve donc

les solutions de I’équation :

1++3B-1)
> .
Donc z; =2 et zp =i — 1 sont les antécedents de 1 + i par f.

21,2 =

ZZ

10. =h © z>—zh+2ih =0(E). On calcule le discriminant A = h?> —8ih. On sait que si A = 0

z—21

(i.e. h =0o0u h = 8i) I'’équation (E) a une unique solution alors que si A # 0 (i.e. h € C\ {0, 8i}) alors ’équation
(E) a deux solutions distinctes. De plus, on vérifie aisement que 2i (la valeur interdite de f) n’est jamais
solution.

Donc 0 et 8i possedent un unique antécedent par f alors que tous les autres complexes en possedent deux.

11. On a vu que tout nombre complexe admet au moins un antécedent par f, donc f est bien surjective.

12. f n'est pas injective car il existe des complexes ayant deux antécedents distincts.




